

and the second water of the second second second

UNIVERSITY OF COPENHAGEN

Reduced filtered K-theory for Cuntz-Krieger algebras

Sara Arklint Department of Mathematical Sciences

Danish-Norwegian Operator Algebra Workshop, Schæffergården, December 12–14, 2013 Slide1/5

Cuntz-Krieger algebras

Definition (Cuntz-Krieger)

Let A be a non-degenerate $n \times n$ matrix over $\{0, 1\}$. Its associated *Cuntz-Krieger algebra* \mathcal{O}_A is the universal C^* -algebra generated by partial isometries s_1, \ldots, s_n satisfying the relations:

•
$$1_{\mathcal{O}_A} = s_1 s_1^* + \cdots + s_n s_n^*$$

•
$$s_i^*s_i = \sum_{j=1}^n A(i,j)s_js_j^*$$
 for all $i \in \{1,\ldots,n\}$

From the matrix A one can compute:

- the primitive ideal space $Prim(\mathcal{O}_A)$ of \mathcal{O}_A ,
- the K-theory of \mathcal{O}_A .

The following are equivalent (and can be determined from A):

- \mathcal{O}_A is \mathcal{O}_∞ -absorbing,
- \mathcal{O}_A has real rank zero,
- $Prim(\mathcal{O}_A)$ is finite.

Reduced filtered K-theory

A C^{*}-algebra \mathfrak{A} can be given a structure as a C^{*}-algebra over a topological space X via a continuous map $Prim(\mathfrak{A}) \to X$.

- A C*-algebra A is canonically a C*-algebra over its primitive ideal space Prim(A).
- We write Y → 𝔅(Y) for the induced map from openlocally closed subsets of X to idealssubquotients in 𝔅.
- For X finite, U_x denotes the smallest open neighborhood of x in X.
- We write $x \to y$ for $x, y \in X$ when $\overline{\{x\}} \supseteq \overline{\{y\}}$ and there is no $z \in X$ for which $\overline{\{x\}} \supseteq \overline{\{z\}} \supseteq \overline{\{y\}}$.

Definition (Boyle-Huang, Restorff)

Let \mathfrak{A} be a C^* -algebra over a finite T_0 -space X. Its *reduced filtered K*-theory $FK_{\mathcal{R}}(\mathfrak{A})$ consists of

$${\mathcal K}_1({\mathfrak A}(x)) \stackrel{\delta}{
ightarrow} {\mathcal K}_0({\mathfrak A}(U_x ackslash \{x\}) \stackrel{i}{
ightarrow} {\mathcal K}_0({\mathfrak A}(U_x))$$

for all $x \in X$, plus the maps

$$\mathcal{K}_0(\mathfrak{A}(U_x)) \xrightarrow{i} \mathcal{K}_0(\mathcal{A}(U_y \setminus \{y\}))$$

for all $x, y \in X$ with $x \to y$.

Classification of Cuntz-Krieger algebras

Theorem (Rørdam, Restorff)

Let \mathcal{O}_A and \mathcal{O}_B be Cuntz-Krieger algebras with finite primitive ideal space X. Then $\mathcal{O}_A \otimes \mathbb{K} \cong \mathcal{O}_B \otimes \mathbb{K}$ if and only if $FK_{\mathcal{R}}(\mathcal{O}_A) \cong FK_{\mathcal{R}}(\mathcal{O}_B)$.

Theorem (Eilers-Katsura-Tomforde-West, A-Bentmann-Katsura)

Let X be a finite T₀-space and \mathfrak{B} a C^{*}-algebra over X of real rank zero. Assume for all $x \in X$ that

- *K*₁(𝔅(*x*)) is free,
- $K_*(\mathfrak{B}(x))$ is finitely generated,
- rank $K_1(\mathfrak{B}(x)) = \operatorname{rank} K_0(\mathfrak{B}(x)).$

Then there exists a Cuntz-Krieger algebra \mathcal{O}_A with $Prim(\mathcal{O}_A) \cong X$ and $FK_{\mathcal{R}}(\mathcal{O}_A) \cong FK_{\mathcal{R}}(\mathfrak{B})$.

Strong and external classification

A separable, nuclear, \mathcal{O}_{∞} -absorbing C^* -algebra \mathfrak{A} with $Prim(\mathfrak{A}) \cong X$ is called a *Kirchberg X-algebra*.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler, A-Restorff-Ruiz, A-Bentmann-Katsura)

Let X be a connected T_0 -space and assume that either X is accordion or $|X| \leq 4$. Let \mathfrak{A} and \mathfrak{B} be Kirchberg X-algebras of real rank zero. Assume for all $x \in X$ that $K_1(\mathfrak{A}(x))$ and $K_1(\mathfrak{B}(x))$ are free, and that $\mathfrak{A}(x)$ and $\mathfrak{B}(x)$ are in the bootstrap category. Then any isomorphism $FK_{\mathcal{R}}(\mathfrak{A}) \to FK_{\mathcal{R}}(\mathfrak{B})$ can be lifted to an X-equivariant isomorphism $\mathfrak{A} \otimes \mathbb{K} \to \mathfrak{B} \otimes \mathbb{K}$.

Theorem (A-Restorff-Ruiz)

There exists a Cuntz-Krieger algebra \mathcal{O}_A with $|Prim(\mathcal{O}_A)| = 4$ for which the canonical map

$$\operatorname{Aut}(\mathcal{O}_A \otimes \mathbb{K}) \to \operatorname{Aut}(\overline{\mathsf{FK}}(\mathcal{O}_A))$$

is not surjective.