

THE OWNER OF TAXABLE PARTY OF TAXABLE PARTY.

UNIVERSITY OF COPENHAGEN

Corners and other hereditary subalgebras of graph C^* -algebras

Sara Arklint Centre for Symmetry and Deformation

Joint work with James Gabe and Efren Ruiz

Classification, Structure, Amenability and Regularity at University of Glasgow, September 1–5, 2014 Slide $1/5\,$

What is a graph C^* -algebra?

Definition

Let $E = (E^0, E^1, r, s)$ be a (countable, directed) graph. Its graph C^* -algebra $C^*(E)$ is the universal C^* -algebra generated by mutually orthogonal projections $\{p_v \mid v \in E^0\}$ and partial isometries $\{s_e \mid e \in E^1\}$ satisfying the relations

1
$$s_e^* s_f = 0$$
 if $e, f \in E^1$ and $e \neq f$,
2 $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$,
3 $s_e s_e^* \le p_{s(e)}$ for all $e \in E^1$,
4 $p_v = \sum_{e \in s^{-1}(v)} s_e s_e^*$ for all $v \in E^0$ with $0 < |s^{-1}(v)| < \infty$.

Proposition (A-Ruiz)

Let E be a graph. Then the following are equivalent:

- $\bullet E \text{ is finite graph with no sinks.}$
- **2** $C^*(E)$ is a Cuntz-Krieger algebra.
- C^{*}(E) is unital and

 $\operatorname{rank}(K_0(C^*(E))) = \operatorname{rank}(K_1(C^*(E))).$

Corners of Cuntz-Krieger algebras

Theorem (A-Ruiz)

Let \mathfrak{A} be a Cuntz-Krieger algebra.

- If p is a nonzero projection in 𝔅 ⊗ 𝐾, then p(𝔅 ⊗ 𝐾)p is a Cuntz-Krieger algebra.
- Ø If p is a nonzero projection in 𝔄, then p𝔄p is a Cuntz-Krieger algebra.

Corollary

Let \mathfrak{B} be a unital C^* -algebra. If \mathfrak{B} is stably isomorphic to a Cuntz-Krieger algebra, then \mathfrak{B} is a Cuntz-Krieger algebra.

Theorem (Ara-Moreno-Pardo)

Let E be a row-finite graph. Any projection in $C^*(E) \otimes \mathbb{K}$ is Murray-von Neumann equivalent to a projection of the form

with all but finitely many m_v equal to zero.

Nonstable *K*-theory

Theorem (Ara-Moreno-Pardo)

Let E be a row-finite graph. Any projection in $C^*(E)\otimes \mathbb{K}$ is Murray-von Neumann equivalent to a projection of the form

$$\sum_{v\in S}m_vp_v$$

where $m_v \ge 1$ for all $v \in S$, and S is a finite subset of E^0 .

Theorem (Hay-Loving-Montgomery-Ruiz-Todd)

Let E be a graph. Any projection in $C^*(E)\otimes \mathbb{K}$ is Murray-von Neumann equivalent to a projection of the form

$$\sum_{(v,T)\in S} n_{(v,T)} \left(p_v - \sum_{e\in T} s_e s_e^* \right)$$

where $m_{(v,T)} \geq 1$ for all $(v,T) \in S$, and S is a finite subset of

$$\{(v,T)\in E^0\times 2^{E^1}\mid T\subseteq s_E^{-1}(v), T \text{ is finite}, T=\emptyset \text{ when } |s_E^{-1}(v)|<\infty\}$$

Hereditary subalgebras of graph C^* -algebras

Theorem (A-Gabe-Ruiz)

Let E be a graph with finitely many vertices.

- **1** Let \mathfrak{A} be a hereditary subalgebra of $C^*(E) \otimes \mathbb{K}$. If \mathfrak{A} is σ_p -unital, then \mathfrak{A} is a graph C^* -algebra.
- **2** Let \mathfrak{A} be a hereditary subalgebra of $C^*(E)$. If \mathfrak{A} is σ_p -unital, then \mathfrak{A} is a graph C^* -algebra.

Corollary

Let \mathfrak{A} be a σ_p -unital C^* -algebra, and let E be a graph with finitely many vertices. If \mathfrak{A} is stably isomorphic to $C^*(E)$, then \mathfrak{A} is a graph C^* -algebra.

