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Abstract

This thesis deals with classification of nonsimple C∗-algebras of real rank
zero, and whether filtered K-theory is a suitable invariant for this purpose.
As a consequence of the result of E. Kirchberg for purely infinite, nuclear

C∗-algebras with a finite primitive ideal space, it suffices to lift isomorphisms
on filtered K-theory to ideal related KK-equivalences to achieve the desired
classification result. Results by R. Meyer and R. Nest, and by R. Bentmann
and M. Köhler, describe for exactly which finite primitive ideal spaces this
is possible for general C∗-algebras.
The main question throughout the thesis is the following: is it possible

to achieve the desired classification result for arbitrary finite primitive ideal
spaces by restricting to C∗-algebras of real rank zero that possibly satisfy
further restrictions on K-theory? The thesis consists of an account of the
relevant theory and the relevant results, plus two articles.
The smallest primitive ideal spaces that do not admit classification of

general C∗-algebras, are six four-point spaces. In the first article (with
G. Restorff and E. Ruiz), these six four-point spaces are examined, and it is
shown that for four of these spaces, isomorphisms are liftable for C∗-algebras
of real rank zero.
In the second article (with R. Bentmann and T. Katsura) it is shown

that for real rank zero C∗-algebras whose subquotients have free K1-groups,
isomorphisms are liftable also for a fifth of the spaces. In this article, the
range of filtered K-theory is determined for real rank zero graph algebras
over primitive ideal spaces that admit classification. As a consequence of
completeness of filtered K-theory combined with this range result, one can
conclude that real rank zero extensions of stabilized Cuntz-Krieger algebras
are stabilized Cuntz-Krieger algebras, provided the primitive ideal space per-
mits classification.
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The following is a Danish translation of the abstract as required by the rules
of the University of Copenhagen.

Resumé

Denne afhandling omhandler klassifikation af ikke-simple C∗-algebraer af
reel rang nul og hvorvidt invarianten filtreretK-teori er passende til formålet.
Som en konsekvens af E. Kirchbergs resultat for rent uendelige, nukleære

C∗-algebraer med endeligt primitivt idealrum, er det tilstrækkeligt at kunne
løfte isomorfier på den filtrerede K-teori til idealrelateret KK-ækvivalenser
for at opnå det ønskede klassifikationsresultat. Resultater af R. Meyer og
R. Nest samt R. Bentmann og M. Köhler beskriver for præcis hvilke endelige
primitive idealrum dette er muligt for generelle C∗-algebraer.
Det gennemgående spørgsmål i afhandlingen er følgende: er det muligt

at opnå det ønskede klassifikationsresultat for vilkårlige endelige primitive
idealrum såfremt man restringerer til C∗-algebraer af reel rang nul og even-
tuelt med yderligere K-teoretiske restriktioner? Afhandlingen består af en
redegørelse for den relevante teori og de relevante resultater samt to artikler.
De mindste primitive idealrum der ikke tillader klassifikation af generelle

C∗-algebraer, er seks firepunktsrum. I den første artikel (med G. Restorff og
E. Ruiz) undersøges disse seks firepunktsrum, og det vises at for de fire kan
isomorfier løftes såfremt C∗-algebraerne har reel rang nul.
I den anden artikel (med R. Bentmann og T. Katsura) vises det at såfremt

der restringeres til C∗-algebraer af reel rang nul hvis subkvotienter alle
har frie K1-grupper, kan isomorfier løftes for yderligere et rum. I artiklen
bestemmes desuden, for de primitive idealrum der tillader klassifikation,
billedet af filtreret K-teori for grafalgebraer af reel rang nul. Som en kon-
sekvens af fuldstændighed af filtreret K-teori kombineret med dette billed-
resultat kan det sluttes at ekstensioner af reel rang nul af stabiliserede Cuntz-
Krieger-algebraer er stabiliserede Cuntz-Krieger-algebraer, givet det primi-
tive idealrum tillader klassifikation.



Preface

This text constitutes my thesis for the PhD degree in mathematics from
the PhD School of Science at the Faculty of Science, University of Copen-
hagen where I have been enrolled from May 2008 to January 2012. I started
out studying stably finite C∗-algebras and their automorphism groups, but
September 2009 I switched focus to nonsimple, purely infinite C∗-algebras,
and this thesis focuses solely on the latter.
The thesis consists of the two articles Filtrated K-theory of real rank zero

C∗-algebras, [ARR], with Gunnar Restorff, and Efren Ruiz, and Reduction of
filtered K-theory and a characterization of Cuntz-Krieger algebras, [ABK],
with Rasmus Bentmann, and Takeshi Katsura, together with an account,
Chapters 2 and 3, of the theory and results that the articles are based on
and are a continuation of. The first article, [ARR], has been submitted to
International Journal of Mathematics, while the second article, [ABK], is
still a preprint.
The main results of the two articles are quoted in Chapters 2 and 3, and

it is possible to read Chapters 1 to 3 without reading the articles. Please
note that some of the quoted results, both those from the two articles and
those by others, are quoted in a weaker form to ease notation and improve
readability.
The subject of the articles is filtered K-theory of real rank zero C∗-alge-

bras and of graph algebras. Chapter 2 is therefore on filtered K-theory and
filtered K-theory of real rank zero C∗-algebras, while Chapter 3 is on graph
algebras and filtered K-theory of graph algebras.

Chronological course

When Ralf Meyer and Ryszard Nest introduced their counterexample over
the space W in the fall of 2008, it killed almost all hope in filtered K-theory
as a classifying functor. My advisor, Søren Eilers, raised the question of
whether their counterexample had real rank zero. The answer was that the
counterexample itself did not have real rank zero but that there existed a
suitably nice real rank zero C∗-algebra over W whose filtered K-theory had
projective dimension 2, and it was believed that this made it most likely that
real rank zero counterexamples existed.
In an attempt to understand what properties of Cuntz-Krieger algebras

made their classification possible, Gunnar Restorff, Efren Ruiz, and I ex-
amined the filtered K-theory of a real rank zero C∗-algebra over W and as
a result proved in the fall of 2010 that filtered K-theory does classify the
real rank zero C∗-algebras over W that are tight, stable, purely infinite,
nuclear, separable and have all simple subquotients in the bootstrap class.

iii
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Continuing with the space Y over which Rasmus Bentmann had constructed
a counterexample using the methods of Ralf Meyer and Ryszard Nest, we got
the same positive result. For the space D over which Rasmus Bentmann also
had constructed a counterexample, our methods did not apply, and even-
tually I calculated the filtered K-theory of the constructed counterexample
and discovered disappointingly that the counterexample had real rank zero.
Since one can construct plenty of Cuntz-Krieger algebras with D as their

primitive ideal space, it was natural to take another property of the Cuntz-
Krieger algebras into account. For the space D, the position of theK1-groups
in the filtered K-theory of a real rank zero C∗-algebra made it likely that
freeness of these groups was sufficient or at least important, and Takeshi Kat-
sura noticed in the spring of 2011 that the methods he, Rasmus Bentmann,
and I were using to determine the range of filtered K-theory for graph alge-
bras, applied to prove classification of C∗-algebras over D with the K-theory
of a graph algebra using the reduced filtered K-theory.
By introducing the notion of unique path property for a finite primitive

ideal space, we are beginning to be able to describe what causes the existence
of real rank zero counterexamples.
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CHAPTER 1

Introduction

1.1. On filtered K-theory

The strong classification of Kirchberg algebras, i.e., simple, stable, purely
infinite, nuclear, separable C∗-algebras, in the bootstrap class consists of two
parts, namely the result due to E. Kirchberg and N. C. Phillips saying that
any KK-equivalence between Kirchberg algebras lifts to a ∗-isomorphism,
and the Universal Coefficient Theorem of J. Rosenberg and C. Schochet by
which one can lift any isomorphism on the K-theory of separable C∗-al-
gebras in the bootstrap class to a KK-equivalence. Shortly after proving
the classification result for Kirchberg algebras, E. Kirchberg generalized the
result to X-equivariant KK-theory by proving that for tight, stable, O∞-
absorbing, nuclear, separable C∗-algebras over a space X, any X-equivariant
KK-equivalence lifts to a X-equivariant ∗-isomorphism.
The classification of nonsimple, stable, O∞-absorbing, nuclear, separa-

ble C∗-algebras would therefore be complete if one could establish an X-
equivariant Universal Coefficient Theorem. This was done by A. Bonkat for
separable C∗-algebras A with exactly one nontrivial ideal I and the invari-
ant consisting of the six-term sequence in K-theory induced by the extention
I ↪→ A� A/I. The result of A. Bonkat thereby gave a strong version of the
classification of stable, purely infinite, nuclear, separable C∗-algebras with
exactly one nontrivial ideal which was due to M. Rørdam who had introduced
the invariant.
Inspired by the result of M. Rørdam, G. Restorff classified a certain class of

nonsimple, unital, purely infinite, nuclear, separable C∗-algebras with finitely
many ideals, namely the Cuntz-Krieger algebras satisfying property (II),
using a generalized version of the invariant of M. Rørdam that consisted
of six-term sequences in K-theory induced by extensions of ideals in the
C∗-algebra. For separable C∗-algebras with exactly two nontrivial ideals,
G. Restorff established a Universal Coefficient Theorem for his invariant.
Shortly after, R. Meyer and R. Nest introduced filtered K-theory for C∗-

algebras with finitely many ideals, and established a Universal Coefficient
Theorem for their invariant under some restrictions on the primitive ideal
space of the C∗-algebras. This filteredK-theory, which R. Meyer and R. Nest
denotes filtrated K-theory, includes the six-term sequences in K-theory in-
duced by all extensions of subquotients of the C∗-algebra and thereby gen-
eralizes the invariants mentioned above. Most disappointing, R. Meyer and
R. Nest also constructed two nonisomorphic stable, purely infinite, nuclear,
separable C∗-algebras with the same finite primitive ideal space and isomor-
phic filtered K-theory, showing that the intuitively right invariant is not
sufficient. Later, R. Bentmann and M. Köhler used the methods of R. Meyer

1



2 1. INTRODUCTION

and R. Nest to establish exactly which finite primitive ideal spaces admit
a Universal Coefficient Theorem and classification of stable, purely infinite,
nuclear, separable C∗-algebras.
As any finite T0-space can be realized as the primitive ideal space of a

Cuntz-Krieger algebra, the question is naturally: why are Cuntz-Krieger
algebras classified by filtered K-theory when general purely infinite, nuclear,
separable C∗-algebras with finitely many ideals are not?
In an attempt to answer this question, filtered K-theory of C∗-algebras of

real rank zero, and of graph algebras, is studied in this thesis.

1.2. On real rank zero

Intuitively, real rank zero guarantees that the C∗-algebra has many projec-
tions and thereby that its K-theory carries a lot of information. All Kirch-
berg algebras have real rank zero, but not all nonsimple, purely infinite,
nuclear, separable C∗-algebras do.
It is at the same time surprising and not suprising that real rank zero

turns out to play a role in the classification of nonsimple, purely infinite
C∗-algebras.
Not surprising, since real rank zero played a significant role in the classifi-

cation of nonsimple, stably finite C∗-algebras. In classification of stably finite
C∗-algebras, one considers either the simple case or the nonsimple real rank
zero case, e.g., in the classification of simple AT algebras by G. A. Elliott
using the Elliott invariant, or in the classification of real rank zero AH alge-
bras of slow dimension growth by M. Dadarlat and G. Gong using ordered
total K-theory.
But also surprising, since in the classification of nonsimple, stably finite

C∗-algebras, the role of real rank zero is to guarantee that the ordered K0-
group contains enough information to keep track of the ideal structure of
the C∗-algebra. For stably finite C∗-algebras of real rank zero, there is an
isomorphism between the lattice of ideals in the C∗-algebra and the lattice
of order ideals in the ordered K0-group. But for purely infinite C∗-algebras,
all elements in the K0-group are positive, and the invariant introduced to
hopefully classify nonsimple, purely infinite C∗-algebras is filtered K-theory
which already keeps track of the ideal structure.
A nonsimple, purely infinite, separable, nuclear C∗-algebra with finitely

many ideals has real rank zero if and only if its filtered K-theory satisfies the
following condition: all boundary maps from even to odd K-groups vanish.
This follows from the fact that all simple subquotients of such a C∗-algebra
are Kirchberg algebras and therefore have rel rank zero, combined with the
following result of L. G. Brown and G. K. Pedersen:

Theorem 1.2.1 ([BP91, 3.14]). Let I ↪→ A � A/I be an extension of
C∗-algebras. Then A has real rank zero if and only if I and A/I have real
rank zero and projections in A/I lift to projections in A.

1.3. On graph algebras

Graph algebras is a relevant class of C∗-algebras to study for many reasons.
On one hand it is a large class containing, e.g., both the AF algebras and
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the Cuntz-Krieger algebras, and on the other hand it is a well-behaved and
well-controlled class.
Several properties on the C∗-algebraic level — e.g., pure infiniteness, ideal

structure, real rank zero — correspond to properties of the graph. If one
desires to construct a C∗-algebra with certain properties, one can therefore
do it by constructing a graph with the corresponding properties. As an
example, in [EK], S. Eilers and T. Katsura provide a counterexample to a
conjecture concerning semiprojectivity by translating a relevant property of
C∗-algebras to a property of graphs.
Most classification results deal with either stably finite or purely infinite

C∗-algebras. Within the class of stably finite C∗-algebras there is, e.g., the
classification of AF algebras by O. Bratteli and G. A. Elliot, or the result of
M. Dadarlat and G. Gong mentioned earlier. Within the class of purely infi-
nite C∗-algebras, there is, e.g., the results of E. Kirchberg and N. C. Phillips,
or M. Rørdam, mentioned earlier. The graph algebras, however, are a mix
of purely infinite and stably finite C∗-algebras, in the way that a simple
subquotient of a graph algebra is either a Kirchberg algebra, hence purely
infinite, or an AF algebra, hence stably finite. This makes the graph alge-
bras a suitable test class for an invariant constructed to handle both purely
infinite and stably finite C∗-algebras. S. Eilers, G. Restorff, and E. Ruiz
have conjectured that graph algebras with finitely many ideals are classified
by ordered filtered K-theory.
When only dealing with the purely infinite case, the purely infinite graph

algebras provide a fairly large test class for filtered K-theory — the only
restriction on the filteredK-theory apparently being freeness of allK1-groups
and the vanishing of maps caused by real rank zero. Furthermore, when it
comes to filtered K-theory, a very useful property of graph algebras is that
there is a straightforward and easy algorithm for computing their ordered
filtered K-theory. Usually, larger K-theoretic invariants are not that easy to
calculate.

1.4. Main contributions

By a result of R. Bentmann and M. Köhler, the filtered K-theory over a
finite T0-spaceX admits a Universal Coefficient Theorem if and only ifX is a
so-called accordion space. All spaces with three or less points are accordion
spaces, and there are up to homeomorphism six nonaccordion four-point
spaces; in the following chapters they will be denoted W, Wop, Y, Yop, D,
and S.
R. Meyer and R. Nest, and R. Bentmann have for all X ∈ {W,Y,D,S}

constructed counterexamples to classification of purely infinite C∗-algebras
over X, i.e., constructed non-KK(X)-equivalent, tight, stable, purely infi-
nite, nuclear, separable C∗-algebras over X with all simple subquotients in
the bootstrap class, and with isomorphic filtered K-theory.
In [ABK], the notion of X having the unique path property, a general-

ization of accordion spaces, is introduced, and for such X a reduction FKB
of filtered K-theory is defined. The spaces W, Y, and S have the unique
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path property while D does not. In [ABK], the reduction FKR of filteredK-
theory that was introduced by G. Restorff to classify Cuntz-Krieger algebras,
is also studied.
The main points and contributions in the thesis are the following.

• The constructed counterexamples over W, Y, and S are not of real
rank zero. The constructed counterexample over D is of real rank
zero.
• Let X ∈ {W,Wop,Y,Yop}, then for real rank zero, tight, stable,
purely infinite, nuclear, separable C∗-algebras over X with all sim-
ple subquotients in the bootstrap class, any isomorphism on filtered
K-theory FK lifts to an X-equivariant ∗-isomorphism.
• For real rank zero, tight, stable, purely infinite, nuclear, separable
C∗-algebras over D with all simple subquotients in the bootstrap
class and with free K1-groups, any isomorphism on FKR lifts to an
D-equivariant ∗-isomorphism.
• Assume X has the boundary decomposition property, then for real
rank zero C∗-algebras over X, any isomorphism on FKB extends
uniquely to an isomorphism on FKST . For X an accordion space
or one of the spaces W, Wop, Y, and Yop, this means that for real
rank zero, tight, stable, purely infinite, nuclear, separable C∗-alge-
bras over X with all simple subquotients in the bootstrap class, any
isomorphism on FKB lifts to an X-equivariant ∗-isomorphism.
• Assume X has the boundary decomposition property, then for real
rank zero C∗-algebras with free K1-groups for all simple subquo-
tients, any isomorphism on FKR extends (nonuniquely) to an iso-
morphism on FKST . For X an accordion space or one of the spaces
W, Wop, Y, and Yop, this means that for real rank zero, tight, sta-
ble, purely infinite, nuclear, separable C∗-algebras over X with all
simple subquotients in the bootstrap class and with free K1-groups,
any isomorphism on FKR lifts to an X-equivariant ∗-isomorphism.
• For a C∗-algebra A over any finite T0-space X, FKR(A) is isomor-
phic to FKR(B) for B a tight, purely infinite graph algebra if and
only if K1(A(x)) is free for all x ∈ X. Combined with the above
result, this determines the range of FKST for real rank zero graph
algebras over any finite space X with the boundary decomposition
property.

The notion of boundary decomposition property is a technical condition
on spaces with the unique path property and will be introduced in Chapter 3.
The invariant FKST is referred to as concrete filtered K-theory and will be
introduced in Chapter 2. For accordion spaces and the six nonaccordion
four-points spaces it is known that FKST equals FK, but it is unknown
whether there exists a finite T0-space X for which FKST is strictly coarser
than FK.

1.5. Unanswered questions

The following questions are still unanswered but it seems likely that they
have a positive answer. Let X be a finite T0-space.
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• Do all isomorphisms on FKR extend to isomorphisms on FK for
real rank zero C∗-algebras A over X that have the property that
K1(A(x)) is free for all x ∈ X?
• Assume X has the unique path property. Do all isomorphisms on

FKB lift to X-equivariant ∗-isomorphisms for real rank zero, tight,
stable, purely infinite, nuclear, separable C∗-algebras over X with
all simple subquotients in the bootstrap class?
• Do all isomorphisms on FKR lift to X-equivariant ∗-isomorphisms
for real rank zero, tight, stable, purely infinite, nuclear, separable
C∗-algebras over X with all simple subquotients in the bootstrap
class and with free K1-groups?
• Assume X has the unique path property. Do FKST and FK coin-
cide?

It is also unresolved whether FKST and FK coincide for general finite T0-
space X, but even though a negative answer would be unpleasant, it is not
clear what to expect.





CHAPTER 2

Filtered K-theory

In this chapter, the notion of a C∗-algebra over a topological spaceX is de-
fined, X-equivariant KK-theory is introduced, filtered K-theory is defined,
and an overview of the known results on classification of nonsimple, purely
infinite, nuclear, separable C∗-algebras using filtered K-theory is given.

2.1. C∗-algebras over X and KK(X)-theory

The notion of C∗-algebras over a topological space is quite useful for defin-
ing what it means for maps — on the C∗-algebraical level as well as on the
K-theoretical level — to preserve or respect the ideal structure of nonsimple
C∗-algebras,
Let O(X) denote the open subsets of X, and I(A) denote the lattice of

(two-sided, closed) ideals in A. A C∗-algebra over a topological space X is
a pair (A,ψ) consisting of a C∗-algebra A and a map ψ : O(X) → I(A)
that preserves finite infima and arbitrary suprema. We then write A(U) for
ψ(U). Assume thatX is a finite topological space satisfying the T0 separation
axiom, i.e., having the property that {x} 6= {y} for all x, y ∈ X with x 6= y,
where Y denotes the closure of a subset Y in X. Then a C∗-algebra over
X can equivalently be defined as a pair (A,ψ∗) consisting of a C∗-algebra
A and a a continuous map ψ∗ : Prim(A) → X, where Prim(A) denotes the
primitive ideal space of A.
We call the C∗-algebra A tight over X if the map ψ : O(X) → I(A) is

a lattice isomorphism, or equivalently if the map ψ∗ : Prim(A) → X is a
homeomorphism.
The locally closed subsets of X are denoted by LC(X) = {U\V | V,U ∈
O(X), V ⊆ U}, and the connected, nonempty, locally closed subsets of X
are denoted by LC(X)∗. For Y ∈ LC(X) we define A(Y ) = A(U)/A(V )
when Y = U\V for some V,U ∈ O(X) satisfying V ⊆ U . Up to natural
isomorphism, A(Y ) does not depend on the choice of U and V .
For C∗-algebras A and B over X, we say that a ∗-homomorphism ϕ : A→

B is X-equivariant if ϕ(A(U)) ⊆ B(U) holds for all U ∈ O(X). An X-
equivariant homotopy (ϕt) is then a homotopy with the property that ϕt
is X-equivariant for all t ∈ [0, 1]. An extension A ↪→ B � C is called
X-equivariant if it induces an extension A(U) ↪→ B(U) � C(U) for all
U ∈ O(X).
E. Kirchberg has constructed X-equivariant KK-theory, KK∗(X;−,−),

for separable C∗-algebras over X, and equipped it with an X-equivariant
Kasparov product

−�− : KKi(X;A,B)⊗KKj(X;B,C)→ KKi+j(X;A,C).

7



8 2. FILTERED K-THEORY

The functor KK∗(X;−,−) is covariant in the first variable and contravari-
ant in the second, it is invariant under X-equivariant homotopies and sta-
ble isomorphisms, and has the property that the functors KKi(X;−,−),
KKi+1(X; S−,−), KKi+1(X;−, S−), and KKi(X; S−, S−) are equivalent.
The X-equivariant KK-theory is also called ideal related KK-theory and is
here refered to as KK(X)-theory.
Let KK(X) denote the category with objects separable C∗-algebras over

X and morphism groups KK0(X;A,B). A KK(X)-equivalence between
C∗-algebras A and B in KK(X) is then a class α in KK0(X;A,B) for which
there exists a class β in KK0(X;B,A) such that α � β = idA and β �
α = idB in KK0(X;A,A) respectively KK0(X;B,B). In particular, X-
equivariant isomorphisms induce KK(X)-equivalences. E. Kirchberg proved
the following powerful result.

Theorem 2.1.1 ([Kir00, 4.3]). Let A and B be tight, stable, O∞-absorb-
ing, nuclear, separable C∗-algebras over the space X. Then any KK(X)-
equivalence between A and B is induced by an X-equivariant isomorphism
between A and B.

Recall that there are three notions of pure infiniteness for nonsimple
C∗-algebras, namely pure infiniteness, strong pure infiniteness, and O∞-
absorbtion, introduced by E. Kirchberg and M. Rørdam; cf. [KR00] and
[KR02].

Theorem 2.1.2 ([KR02, 9.1]). Let A be a separable C∗-algebra. If A
is O∞-absorbing, then A is strongly purely infinite. If A is strongly purely
infinite, then A is purely infinite.
Assume furthermore that A is simple and nuclear. Then A absorbs O∞ if

and only if A is purely infinite.

For nuclear, separable C∗-algebras with a finite primitive ideal space, the
three notions of pure infiniteness for nonsimple C∗-algebras coincide, i.e.,
a purely infinite, nuclear, separable C∗-algebra with a finite primitive ideal
space will always be O∞-absorbing. Since the simple subquotients of such
a C∗-algebra are O∞-absorbing by the above theorem, this follows from
applying the following theorem by A. Toms and W. Winter finitely many
times.

Theorem 2.1.3 ([TW07, 4.3]). Let I ↪→ A � A/I be an extension of
separable C∗-algebras. If I and A/I are O∞-absorbing, then so is A.

To complete the picture of the KK(X)-equivalence classes, R. Meyer and
R. Nest have proved the following.

Theorem 2.1.4 ([MN09, 5.3]). For a finite T0-space X, any nuclear C∗-
algebra in KK(X) is KK(X)-equivalent to a tight, stable, purely infinite,
nuclear C∗-algebra in KK(X).

2.2. The Meyer-Nest method for establishing UCTs

In [MN10], R. Meyer and R. Nest have developed a general theory for
proving a Universal Coefficient Theorem, i.e., establishing short exactness of

Ext1
C(F (A),ΣF (B)) ↪→ T(A,B) � HomC(F (A), F (B)),
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for a stable homological functor F : T→ C and objects A and B in a suitable
subcategory of T.
In this section, an overview of their results is given, and in the next section,

their definition of filtered K-theory is given, and it is explained how they
apply their results to filtered K-theory.

2.2.1. The setting. In the following, T denotes a triangulated cate-
gory, and C denotes an abelian category equipped with a suspension Σ, i.e.,
an additive automorphism. The suspension automorphism in T is denoted
by Σ, and exact triangles in T

A
f // B

g~~~~~~~~~

C

h
◦@@@

__@@@

are written A f→ B
g→ C

h→ ΣA.
A functor F : T → C is called homological if F (A) → F (B) → F (C) is

exact at F (B) for all exact triangles A → B → C → ΣA, and it is called
stable if it intertwines the suspensions in T and C, i.e., if FΣ = ΣF .
For a stable, homological functor F : T→ C, its kernel kerF is defined as

the subcategory of T with same class of objects as T and morphisms

kerF (A,B) = {f ∈ T(A,B) | F (f) = 0}.
A subcategory I of T is called a homological ideal in T if it is the kernel of
a stable, homological functor.

2.2.2. I-projective resolutions. As T is not abelian, there is no no-
tion of projective resolutions of objects in T. For a fixed homological ideal
I, one can however define projective resolutions relative to I.

Definition 2.2.1 ([MN10]). Homological notions relative to a homolog-
ical ideal I are defined in the following way:

• A stable, homological functor F : T → C is called I-exact if I ⊆
kerF .
• An object P in T is called I-projective if T(P,−) : T → Ab is I-
exact.
• An object A in T is called I-contractible if idA ∈ I(A,A).
• A morphism A

f→ B is called an I-phantom map if f ∈ I(A,B).
• A morphism A

f→ B is called I-monic if h ∈ I(C,ΣA) when f is
(uniquely) embedded in an exact triangle A f→ B

g→ C
h→ ΣA.

• A morphism A
f→ B is called I-epic if g ∈ I(B,C) when f is

(uniquely) embedded in an exact triangle A f→ B
g→ C

h→ ΣA.
• A morphism A

f→ B is called an I-equivalence if g ∈ I(B,C) and
h ∈ I(C,ΣA) when f is (uniquely) embedded in an exact triangle
A

f→ B
g→ C

h→ ΣA.
• An exact triangle A f→ B

g→ C
h→ ΣA is called I-exact if h ∈

I(C,ΣA).
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• A chain complex (Cn, dn) in T is called I-exact if for all n ∈ Z,
Xn

gn→ ΣCn
Σfn+1→ ΣXn+1 belongs to I(Xn,ΣXn+1) when dn is

(uniquely) embedded in an exact triangle Cn
dn→ Cn−1

fn→ Xn
gn→

ΣCn.

An I-projective resolution of an object A in T is an I-exact chain complex
· · · → Pn → Pn−1 → · · · → P0 → A with Pn I-projective for all n ≥ 0.
We say that there are enough I-projective objects in T, if for all A in T,

there exists an I-projective object P and an I-epic morphism P → A. If
T has enough I-projective objects, then any object in T has an I-projective
resolution by [MN10, 3.26].
If the triangulated category T has enough I-projective objects, then for

an object A in T, pdT,I(A) denotes the I-projective dimension of A in T,
i.e., the minimal length of an I-projective resolution of A in T. Similarly,
if the abelian category C has enough projective objects, pdC(A) denotes the
projective dimension of the object A in C.

2.2.3. Universal Coefficient Theorem. An I-exact, stable, homo-
logical functor F : T→ C is called universal if any other I-exact, stable, ho-
mological functor G : T→ C′ factors through it as G = ḠF with Ḡ : C→ C′

a stable, exact functor unique up to natural isomorphism. The universal
I-exact, stable, homological functor is unique up to natural isomorphism.
To establish a UCT for an I-exact, stable, homological functor F : T →

C, we need to construct a one-to-one correspondance between projective
resolutions in C and I-projective resolutions in T. To do this, we define the
(partially defined) left adjoint of F , denoted F`. Given an object A in C, we
consider the functor C(A,F (−)). If this functor is representable, i.e., if it is
equivalent to the functor T(A′,−) for some object A′ in T, we define F`(A)
as the representing object A′. Note that A′ is unique up to equivalence in
T. The left adjoint functor F` may not be defined on all of C but only on a
full subcategory.
Note that for any object A, if F`(A) is defined, then it is an kerF -

projective object as the functor C(A,F (−)) vanishes on kerF .
The following theorem is a consequence of [MN10, 3.41] which says that

under the stated assumptions, F and F` give an equivalence of categories
between the full subcategory of I-projective objects in T and the full sub-
category of projective objects in C, in such a way that an object A in T is
I-projective if and only if F (A) is projective and C(F (A), F (B)) ∼= T(A,B)
for all objects B in T, and that for an object A in T, the functors F and F`
induce bijections between isomorphism classes of I-projective resolutions of
A in T and isomorphism classes of projective resolutions of F (A) in C, so in
particular pdT,I(A) = pdC(F (A)).

Theorem 2.2.2 ([MN10, 3.41]). Let I be a homological ideal in the tri-
angulated category T, let C be a graded abelian category, and let F : T→ C be
an I-exact, stable, homological functor. Assume that idempotents in T split,
and assume that F is the universal I-exact functor and that T has enough
I-projective objects.
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Then F induces an equivalence between the bifunctors ExtnT,I(−,−) and
ExtnC(F (−), F (−)) for all n ≥ 0.

Combining the theorem above with the following theorem, a Universal
Coefficient Theorem is established.

Theorem 2.2.3 ([MN10, 4.4]). Let I be a homological ideal in T, let A
and B be objects in T, and assume that A has an I-projective resolution of
length 1 and that T(A,C) = 0 for all I-contractible objects C in T. Then

Ext1
T,I(ΣA,B) ↪→ T(A,B) � Ext0

T,I(A,B)

is short exact.

Remark 2.2.4. To establish one of the needed assumptions for the above
theorems, R. Meyer and R. Nest note the following in [MN10, 3.37]. If there
exists a finite family of I-exact, stable, homological functors Fi : T → Ci,
i ∈ I, having the properties that

• for all i ∈ I, the left adjoint functor F`i is defined on the projective
objects in Ci
• for all i ∈ I and all objects A in T, there exists a surjection P �
Fi(A) with P a projective object in Ci

then T has enough I-projective objects and these are generated by
⋃

i∈I
{F`i (P ) | P is a projective object in Ci}.

2.3. Universal Coefficient Theorem for filtered K-theory

In [MN09], R. Meyer and R. Nest show that the category KK(X) becomes
a triangulated category when equipped with usual suspension C0(R) ⊗ −,
denoted S−, and with mapping cone sequences as exact triangles.
Let X be a finite T0-space. For a C∗-algebra A over X and a Y ∈ LC(X),

the functor FKY : KK(X) → AbZ/2 is defined as FKY (A) = K∗(A(Y )).
Write FKi

Y (A) for Ki(A(Y )).
In [MN], R. Meyer and R. Nest construct for a fixed finite T0-space X

and for each Y ∈ LC∗(X), commutative, separable C∗-algebras RY over
X that represent the functor FKY : KK(X) → AbZ/2, i.e., such that the
functors KK∗(X;RY ,−) and FKY are equivalent. The representing objects
are constructed such that there are extensions RY \U ↪→ RY � RU when
Y ∈ LC(X) and U ∈ O(Y ). The representing objects RY will be described
in Section 2.7.

2.3.1. Natural transformations between FKY and FKZ . Filtered
K-theory should consist of the functors FKY together with natural transfor-
mations between them, i.e., βZY : FKY → FKZ that satisfy

FKY (A)
βZ
Y (A)
//

FKY (α)
��

FKZ(A)

FKZ(α)
��

FKY (B)
βZ
Y (B)

// FKZ(B)
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for all A,B ∈ KK(X) and all α ∈ KK∗(X;A,B). Examples of natural trans-
formations between these functors are extension maps iYU , restriction maps
r
Y \U
Y , and boundary maps δUY \U for Y ∈ LC(X) and U ∈ O(Y ) appearing in
the six-term exact sequence

FKU (A)
iYU // FKY (A)

r
Y \U
Yxxqqqqqqqqqq

FKY \U (A)
δU
Y \U
◦MMMMM

ffMMMMM

induced by A(U) ↪→ A(Y ) � A(Y \U).
In order for filtered K-theory FK to be the universal ker FK-exact functor

(cf. Section 2.3.5) all natural transformations between all FKY and FKZ

must be included. Since the functors FKY are representable, the Yoneda
Lemma determines all natural transformations between them.

The Yoneda Lemma ([ML98, 3.2]). Let D be a category with small
hom-sets and let r, s be objects in D. Then there is a bijection between
D(s, r) and the natural transformations from D(r,−) to D(s,−). The bijec-
tion is given by h 7→ D(h,−).

By the Yoneda Lemma, the set NT (Y,Z) of all natural transformations
from the functor FKY to the functor FKZ is given by KK∗(X;RZ , RY ).
Given α ∈ KK∗(X;RZ , RY ) we denote by ᾱ the corresponding element
in NT (Y,Z) given by α � − where − � − denotes the Kasparov prod-
uct. Given f ∈ NT (Y, Z), we let f̂ denote the corresponding element in
KK∗(X;RZ , RY ). Let NT i(Y,Z) denote the subgroup corresponding to
KKi(X;RZ , RY ).
The extension map iYU , the restriction map rY \UY , and the boundary map

δUY \U for Y ∈ LC(X) and U ∈ O(Y ) correspond to the KK(X)-classes rep-
resented by RY � RU , RY \U ↪→ RY , and RY \U ↪→ RY � RU , respectively,
by [MN, 2.19].
For all finite T0-spaces X where

⊕
Y,Z∈LC(X)NT (Y, Z) has been calcu-

lated, it is generated by extension maps, restriction maps, and boundary
maps; cf. [Ben10]. It is unknown whether this holds in general.

2.3.2. The target category Mod(NT )c. Let NT denote the category
with objects LC(X) and morphism groups NT (Y, Z). Let Mod(NT ) denote
the category of modules over NT , i.e., grading preserving, additive functors
G : NT → AbZ/2. Hence an NT -module M consists of pairs of abelian
groups M(Y ) = (M(Y )0,M(Y )1), for all Y ∈ LC(X), and product maps

M(Y )i ×NT j(Y,Z)→M(Z)i+j

that are associative and additive in each variable, and satify that idRY
∈

NT (Y, Y ) acts as the identity on M(Y ).
Equivalently, as

⊕NT (Y, Z) is a unital ring, Mod(NT ) is equivalent to
the right modules over

⊕NT (Y,Z). Therefore, Mod(NT ) is an abelian
category with enough projective objects.
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Denote by Mod(NT )c the full subcategory of Mod(NT ) whose class of
objects are those M for which the group M(Y ) is countably generated for
all Y ∈ LC(X).

Definition 2.3.1 ([MN, 2.4]). For a fixed finite T0-space X, the functor
FK: KK(X)→ Mod(NT )c is defined as FK(A)(Y ) = FKY (A) and

FKY (A)×NT (Y,Z)→ FKZ(A)

induced by the Kasparov product. We call FK(A) the filtered K-theory of
the C∗-algebra A over X.

An NT -module M is called exact if the sequence

M(U)
iYU // M(Y )

r
Y \U
Yyyssssssssss

M(Y \U)
δU
Y \U
◦KKKKK

eeKKKKK

is exact for all Y ∈ LC(X) and U ∈ O(Y ). Clearly, FK(A) is an exact NT -
module for any C∗-algebra A over X. For general X, it is unknown whether
all exact NT -modules arise as the filtered K-theory of a C∗-algebra over X.
In [ABK], the category ST with objects LC(X) and morphisms generated

by extension, restriction, and boundary maps is introduced. Recall that it
is unknown whether ST and NT coincide.

Definition 2.3.2. For a finite T0-space X, the functor FKST : KK(X)→
Mod(ST ) is defined as FKST (A)(Y ) = FKY (A) and

FKY (A)× ST (Y,Z)→ FKZ(A)

induced by the Kasparov product. We call FKST (A) the concrete filtered
K-theory of the C∗-algebra A over X.

Note that concrete filtered K-theory FKST is the invariant one intuitively
wants to define, while the abstract definition of filtered K-theory FK is
needed to establish a Universal Coefficient Theorem.

2.3.3. The bootstrap class B(X). In [MN09], R. Meyer and R. Nest
define for a fixed finite T0-space X, the bootstrap class B(X) as the localising
subcategory of KK(X) generated by {ix(C) | x ∈ X}, where ix(C) denotes
the C∗-algebra A over X defined by A(U) = C when x ∈ U and A(U) = 0
when x 6∈ U .
In [MN09, 4.13], R. Meyer and R. Nest show that for a nuclear C∗-alge-

bra A over X, the C∗-algebra A belongs to the bootstrap class B(X) if and
only if A(x) belongs to the bootstrap class of J. Rosenberg and C. Schochet
for all x ∈ X.
R. Meyer and R. Nest give the following two characterizations of B(X).

Proposition 2.3.3 ([MN09, 4.17, 4.18]). A C∗-algebra A over X belongs
to the bootstrap class B(X) if and only if KK∗(X;A,B) vanishes for all B
in KK(X) for which FK(B) = 0.
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Proposition 2.3.4 ([MN, 4.6]). A separable C∗-algebra A over X be-
longs to the bootstrap class B(X) if and only if it is KK(X)-equivalent to a
tight, stable, purely infinite, nuclear, separable C∗-algebra B over X satisfy-
ing the property that B(x) belongs to the bootstrap class of J. Rosenberg and
C. Schochet for all x ∈ X.

2.3.4. Universal Coefficient Theorem for filtered K-theory. To
apply the machinery of R. Meyer and R. Nest in Section 2.2.3, three things
should be done: identify the objects A in KK(X) for which KK∗(X;A,B)
vanishes for all ker FK-contractible objects B in KK(X), establish the functor
FK as the universal ker FK-exact functor, and show that the category KK(X)
has enough ker FK-projective objects.
By the characterization in Proposition 2.3.3 of the bootstrap class B(X),

the objects A in KK(X) for which KK∗(X;A,B) vanishes for all ker FK-
contractible objects B in KK(X), are exactly the objects in B(X).
Using that NT (Y, Z) denotes all natural transformations from FKY to

FKZ , R. Meyer and R. Nest prove that FK is the universal ker FK-exact
functor.

Theorem 2.3.5 ([MN, 4.7]). The functor FK: KK(X) → Mod(NT )c is
the universal ker FK-exact, stable, homological functor.

In [MN, 4.4, 4.5], R. Meyer and R. Nest show that KK(X) has enough
ker FK-projective objects. For each FKY : KK → AbZ/2 they note that
FK`Y (Z[0]) = RY as Hom(Z[0],FKY (−)) is equivalent to KK∗(X;RY ,−),
and FK`Y (Z[1]) = SRY then follows. Hence by additivity the adjoint functor
FK`Y is defined on all pairs of free abelian groups, i.e., all projective objects
in AbZ/2, so by Remark 2.2.4, there are enough ker FK-projective objects in
KK(X).
Hence by the results in Section 2.2.3, the following may be concluded.

Theorem 2.3.6 ([MN, 4.8]). Let A and B be C∗-algebras in KK(X),
assume that A belongs to the bootstrap class B(X), and assume that FK(A)
has projective dimension pdNT FK(A) at most 1 in Mod(NT )c.
Then the sequence

Ext1
NT (FK(A),FK(B))

ι
↪→ KK∗(X;A,B)

π� HomNT (FK(A),FK(B)),

where ι is odd and π even and induced by the Kasparov product, is short
exact.

Corollary 2.3.7 ([MN, 4.9]). Let A and B be C∗-algebras over X be-
longing to the bootstrap class B(X), and assume that FK(A) and FK(B)
have projective dimension at most 1 in Mod(NT )c.
Then any morphism FK(A) → FK(B) in Mod(NT )c lifts to an element

in KK0(X;A,B), and any isomorphism FK(A) → FK(B) in Mod(NT )c
lifts to a KK(X)-equivalence.

2.4. Projective dimension of FK(A) in Mod(NT )c

A new question now arises: does pdNT FK(A) ≤ 1 hold for all C∗-algebras
A in B(X) for all finite T0-spaces X?
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In order to describe the spaces X for which pdNT FK(−) ≤ 1 holds, we
define a partial order on the finite T0-space X the following way: x ≤ y when
{x} ⊆ {y}. As X satisfies the T0 separation axiom, this partial ordering
completely determines the topology on X.
As X is finite, (X,≤) can be represented by a finite directed graph with

vertices elements in X and an edge from x to y if and only if x > y and
x > z ≥ y implies z = y.
In [MN], R. Meyer and R. Nest show that ifX is linear, then pdNT FK(A)

is at most 1 for all C∗-algebras A in KK(X). The space X is called linear
if (X,≤) is totally ordered. A tight C∗-algebra A over a linear space X =
{x1, . . . , xn} with xi ≤ xj when i ≥ j is then a C∗-algebra with linear ideal
lattice

0 ( A(x1) ( A({x1, x2}) ( · · · ( A({x1, . . . , xn−1}) ( A.

Using their methods, R. Bentmann shows in [Ben10] that if X is an ac-
cordion space, then pdNT FK(A) ≤ 1 holds for all C∗-algebras A in KK(X).
The space X is called an accordion space if it is connected, all vertices in
its representing graph have unoriented degree at most 2, i.e., at most two
ingoing or outgoing edges, and exactly two vertices in its representing graph
have unoriented degree 1. So, an accordion space is a space whose repre-
senting graph looks like an accordion. A linear space is an accordion space,
all spaces with at most 3 points are accordion spaces, and in Section 2.5,
examples of four-point spaces that are not accordion spaces will be given.
The projective dimension of FK(A) is mainly a question of properties of

Mod(NT )c. One can show that projective modules in Mod(NT )c are exact
and have free entries. For X linear, R. Meyer and R. Nest show that all exact
NT -modules with free entries are projective, and using this they prove that
all exact modules in Mod(NT )c have projective dimension at most 1. For
accordion spaces, R. Bentmann establish the same properties.

Furthermore, R. Meyer and R. Nest, and R. Bentmann show that for linear
spaces and the more general accordion spaces, all exact objects in Mod(NT )c
arise as the filtered K-theory of a C∗-algebra.
In [MN], R. Meyer and R. Nest consider the four-point space W, which

will be defined in Section 2.5, and construct a C∗-algebra A in B(W) satisfy-
ing pdNT FK(A) = 2. Using this C∗-algebra A, they construct non-KK(W)-
equivalent C∗-algebras in B(W) that have isomorphic filtered K-theory; cf.
Section 2.5. Using their methods, R. Bentmann and M. Köhler show the
following.

Theorem 2.4.1 ([BK]). Let X be a finite connected T0-space. Then the
following are equivalent.

• X is an accordion space.
• For all C∗-algebras A in KK(X), pdNT FK(A) ≤ 1 holds.
• For all A and B in B(X), if FK(A) and FK(B) are isomorphic,
then A and B are KK(X)-equivalent.

Because of the result of R. Bentmann and M. Köhler, it appears that fil-
tered K-theory is useless for classifying C∗-algebras with primitive ideal
spaces that are nonaccordion, i.e., are connected but are not accordion
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spaces. However, as we will see in Section 2.6, the situation is not hope-
less.

2.5. Some counterexamples to classification

In this section the focus is on four spaces W, Y, D, and S and what the
counterexamples to classification, constructed by R. Meyer and R. Nest, and
R. Bentmann, look like for these spaces. Together with the spaces Wop and
Yop, these spaces make up all the four-point nonaccordion spaces.

2.5.1. The counterexample over W. The space W considered by
R. Meyer and R. Nest in [MN] is defined as W = {1, 2, 3, 4} with O(W) =
{U ⊆ W | 4 ∈ U} ∪ {∅}. The representing graph for W is then

1 2 3

4

^^===
OO @@���

and a C∗-algebra A over W then corresponds to an extension A(4) ↪→ A�
A(1)⊕A(2)⊕A(3). To ease notation, subsets ofW will be written, e.g., 124
for {1, 2, 4}.
R. Meyer and R. Nest calculated for each pair Y, Z ∈ LC∗(W) the group
NT (Y,Z) using that NT (Y,Z) ∼= KK∗(X;RZ , RY ) ∼= FKZ(RY ). R. Bent-
mann provides in [Ben10] a large collection of lemmas that make it possible
to identify generators and establish relations in NT . It suffices to calculate
NT (Y,Z) for Y and Z connected since FKY = FKY1 ⊕ · · · ⊕ FKYn when
Y1, . . . , Yn are the connected components of a locally closed subset Y . It
turned out that for W, the morphisms in the category are generated by the
18 natural transformations in the diagram

14
i //
i

��???????? 124
i

��???????? 1
δ◦

????

��????

4

i

??�������� i //

i

��???????? 24

i

??��������

i

��???????? 134
i // 1234

r

??�������� r //

r

��???????? 2
δ◦ // 4

34

i

??�������� i // 234

i
??��������

3

δ ◦����

??����

subject to the following relations:
• All six squares commute.
• For all j ∈ {1, 2, 3}, the composition of 1234\j → 1234 with 1234→
j vanishes.
• For all j ∈ {1, 2, 3}, the composition of j → 4 with 4→ j4 vanishes.
• The sum of the three compositions 1234→ j → 4, for j ∈ {1, 2, 3},
vanishes.

Notice that all the generating transformations are either extension maps,
restrictions maps, or boundary maps. In this case, ST equals NT .

An NT -module is therefore determined by 11 pairs of groups, 15 even
maps, and 3 odd maps. As an example, the maps appearing in the six-term
sequence induced by the extension A(4) ↪→ A(134) � A(13) are i134

4 =
i14
4 i

134
14 = i34

4 i
134
34 , r13

134 = i1234
134 r

1
1234i

13
1 + i1234

134 r
3
1234i

13
3 , and δ4

13 = r1
13δ

4
1 + r3

13δ
4
3 ,

as 13 is not connected.
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Define for each Y ∈ LC∗(X) an NT -module PY by PY (Z) = NT (Y, Z)
and

PY (Z)×NT (Z,W )→ PY (W )

by composition. As an NT -module, PY is free and generated by idRY
∈

PY (Y ), hence it is projective. Notice that PY ∼= FK(RY ).
Now, consider the injective map P1234 → P124 ⊕ P134 ⊕ P234 given by

idR1234 7→ (i1234
124 , i

1234
134 , i

1234
234 ) and extended byNT -linearity, and letM denote

the cokernel. Then the cokernel M has free entries and is exact but has
projective dimension 1, according to [MN]. Let k ≥ 2 and put Mk =
M ⊗ Z/k. Then Mk is

0 //

!!CCCCCCC Z/k

!!CCCCCC
Z/k

◦
CCC

!!CCC

Z/k[1] //

=={{{{{{{

!!CCCCCCC 0

=={{{{{{{

!!CCCCCCC Z/k // (Z/k)2 //

=={{{{{{

!!CCCCCC
Z/k ◦// Z/k[1]

0 //

=={{{{{{{
Z/k

=={{{{{{
Z/k

◦{{{

=={{{

and has projective dimension 2, and

0 // P1234
// P1234 ⊕ P124 ⊕ P134 ⊕ P234

// P124 ⊕ P134 ⊕ P234
// Mk

// 0

is a projective resolution of Mk, according to [MN], and R. Meyer and
R. Nest construct a C∗-algebra Ak in B(W) with FK(Ak) = Mk.
Using the projective resolution of Mk, R. Meyer and R. Nest construct

non-KK(W)-equivalent C∗-algebras in B(W) with filtered K-theory Mk ⊕
P1234[1], where P1234[1] is

Z //

!!CCCCCCCC 0

!!CCCCCCC Z[1]

◦
CCC

!!CCC

Z2 //

=={{{{{{{

!!CCCCCCC Z

=={{{{{{{{

!!CCCCCCCC 0 // Z[1] //

=={{{{{{

!!CCCCCC
Z[1] ◦ // Z2

Z //

=={{{{{{{{
0

=={{{{{{{
Z[1]

◦{{{

=={{{

.

Please notice that for Mk ⊕ P1234[1] the boundary maps j → 4, for all j ∈
{1, 2, 3}, vanish on neither Mk(j)0 ⊕ P1234[1](j)0 nor Mk(j)1 ⊕ P1234[1](j)1.
This implies that the non-KK(W)-equivalent C∗-algebras with this filtered
K-theory do not have real rank zero, and neither do their suspensions.

2.5.2. The refined invariant FK′ over W. For Mod(NT )c over W,
the problem occurs because there are too few projective objects. Note that
in order to be able to construct their counterexample, R. Meyer and R. Nest
used the existense of a free and exact module M that was not projective.
In an attempt to solve the problem, they add a C∗-algebra R12344 over
W with FK(R12344) = M to the class of representing objects. I.e., they
define a new category NT ′ with objects LC(W) ∪ {12344} and morphisms
KK∗(W;RZ , RY ), and define a refined filtered K-theory FK′ : KK(W) →
Mod(NT ′)c as FK′(A)(Y ) = KK∗(W;RY , A) for Y ∈ LC(W) ∪ {12344},
thus adding another K-group and natural transformations to and from it.
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The C∗-algebra R12344 is defined as the mapping cone of one of the gen-
erators of the cyclic group NT (234, 14). Notice that R12344 is unique in
B(W) up to KK(W)-equivalence by the UCT for filtered K-theory FK
since M has projective dimension 1. The choice of generator does not
affect the mapping cone, up to KK(W)-equivalence, and a generator of
NT (134, 24) or NT (124, 34) will also give the same mapping cone, up to
KK(W)-equivalence.
Luckily, it turns out that for all C∗-algebras A in KK(W), FK′(A) has

projective dimension at most 1 in Mod(NT c), and R. Meyer and R. Nest
establish a UCT for this refined filtered K-theory.

Theorem 2.5.1 ([MN, 5.14]). Let A and B be C∗-algebras in KK(W),
and assume that A belongs to the bootstrap class B(W).
Then the sequence

Ext1
NT ′(FK′(A),FK′(B))

ι
↪→ KK∗(W;A,B)

π� HomNT ′(FK′(A),FK′(B)),

where ι is odd and π even and induced by the Kasparov product, is short
exact.
If B also belongs to B(W), then any morphism FK′(A) → FK′(B) in

Mod(NT ′)c lifts to an element in KK0(W;A,B), and any isomorphism
FK′(A)→ FK′(B) in Mod(NT ′)c lifts to a KK(W)-equivalence.

The group FK12344(A) is the K-theory of the pullback of (A(124), A(234))
along (r2

124, r
2
234).

2.5.3. The counterexample over Y. In [Ben10], R. Bentmann con-
siders the space Y defined as Y = {1, 2, 3, 4} with open subsets O(Y) =
{∅, 4, 34, 134, 124, 1234}. The representing graph of Y is

1 2

3

^^===
@@���

4

OO

.

R. Bentmann calculated the morphism groups in NT over Y and discov-
ered that they are generated by the 18 morphisms fitting into the following
diagram

134
r //
i

!!CCCCCCC 13
i

!!CCCCCCC 1

◦
CCCC
δ

!!CCC

34
r //

i
=={{{{{{{

i

!!CCCCCCC 3

i

=={{{{{{{

i

!!CCCCCCC 1234
r // 123 ◦δ //

r
=={{{{{{{

r

!!CCCCCCC 4
i // 34

234
r //

i

=={{{{{{{
23

i
=={{{{{{{

2

◦{{{{

δ
=={{{

subject to the corresponding relations as for W.
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Following the same procedure as R. Meyer and R. Nest, he constructs an
exact object M , namely

0 //

!!CCCCCCCC Z

!!CCCCCCC Z
◦

CC

!!CCCC

Z[1]

=={{{{{{{
//

!!CCCCCCC 0

=={{{{{{{{

!!CCCCCCCC Z // Z2

=={{{{{{{
◦ //

!!CCCCCCC Z[1] // Z[1]

0

=={{{{{{{{ // Z

=={{{{{{{
Z

◦{{

=={{{{

,

with projective dimension 1, defines Mk = M ⊗ Z/k, and shows that there
exists non-KK(Y)-equivalent C∗-algebras in B(Y) with filtered K-theory
Mk ⊕ P123[1], where P123[1] is

Z //

!!CCCCCCCC 0

!!CCCCCCC Z[1]

◦
CCC

!!CCC

Z2 //

=={{{{{{{

!!CCCCCCC Z

=={{{{{{{{

!!CCCCCCCC 0 // Z[1] ◦ //

=={{{{{{

!!CCCCCC Z // Z2

Z //

=={{{{{{{{
0

=={{{{{{{
Z[1]

◦{{{

=={{{

.

Please notice that for Mk ⊕ P123[1], the boundary maps Y → Z, where
(Y, Z) ∈ {(123, 4), (1, 34), (2, 34)}, vanish on neither Mk(Y )0 ⊕ P123[1](Y )0

norMk(Y )1⊕P123[1](Y )1. This implies that the non-KK(Y)-equivalent C∗-
algebras with this filtered K-theory do not have real rank zero, and neither
do their suspensions.

2.5.4. The refined invariant FK′ over Y. Still following the strategy
of R. Meyer and R. Nest, R. Bentmann then defines a C∗-algebra R12334

over Y as the mapping cone of a generator of NT (23, 134), shows that
FK(R12334) = M , and defines a refined filtered K-theory FK′ : KK(Y) →
Mod(NT ′)c where NT ′ has objects LC(Y)∪{12334} and morphism groups
KK∗(Y;RZ , RY ).
Again, it turns out that for all C∗-algebras A in KK(Y), FK′(A) has pro-

jective dimension at most 1 in Mod(NT c), and R. Bentmann establishes a
UCT for this refined filtered K-theory.

Theorem 2.5.2 ([Ben10, 6.1.22]). Let A and B be C∗-algebras in KK(Y),
and assume that A belongs to the bootstrap class B(Y).
Then the sequence

Ext1
NT ′(FK′(A),FK′(B))

ι
↪→ KK∗(Y;A,B)

π� HomNT ′(FK′(A),FK′(B)),

where ι is odd and π even and induced by the Kasparov product, is short
exact.
If B also belongs to B(Y), then any morphism FK′(A) → FK′(B) in

Mod(NT ′)c lifts to an element in KK0(Y;A,B), and then any isomorphism
FK′(A)→ FK′(B) in Mod(NT ′)c lifts to a KK(Y)-equivalence.

The group FK12334(A) is the K-theory of the pullback of (A(13), A(1234))
along (r1

13, r
1
1234).
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2.5.5. The counterexample over D. In [Ben10], R. Bentmann also
considers the space D defined as D = {1, 2, 3, 4} with open subsets O(D) =
{∅, 4, 34, 24, 234, 1234}. The representing graph of D is

1

2

@@���
3

^^===

4

^^===
@@���
.

R. Bentmann calculated the morphism groups in NT over D and discov-
ered that they are generated by the 18 morphisms fitting into the following
diagram

12 ◦δ //
r

!!CCCCCCC 34
i

!!CCCCCCC 3
i

!!CCCCCCC

123 ◦δ //

r
=={{{{{{{

r

!!CCCCCCC 4

i

=={{{{{{{

i

!!CCCCCCC 1 ◦δ // 234
i //

r
=={{{{{{{

r

!!CCCCCCC 1234
r // 123

13 ◦δ //

r

=={{{{{{{
24

i
=={{{{{{{

2

i
=={{{{{{{

also subject to the corresponding relations as for W.
Again following the same procedure as R. Meyer and R. Nest, he constructs

an exact object M , namely

0 ◦ //

!!CCCCCCC Z

!!CCCCCCC Z

!!CCCCCCC

Z ◦ //

=={{{{{{{{

!!CCCCCCCC 0

=={{{{{{{{

!!CCCCCCCC Z[1] ◦ // Z2 //

=={{{{{{{

!!CCCCCCC Z // Z

0 ◦ //

=={{{{{{{
Z

=={{{{{{{
Z

=={{{{{{{

with projective dimension 1, defines Mk = M ⊗ Z/k, and shows that there
exists non-KK(D)-equivalent C∗-algebras in B(D) with filtered K-theory
Mk ⊕ P234[1], where P234[1] is

Z[1] ◦ //

!!CCCCCCC 0

!!CCCCCCC Z[1]

!!CCCCCC

Z[1]2 ◦ //

=={{{{{{

!!CCCCCC
Z

=={{{{{{{{

!!CCCCCCCC 0 ◦ // Z[1] //

=={{{{{{

!!CCCCCC
Z[1] // Z[1]2

Z[1] ◦ //

=={{{{{{{
0

=={{{{{{{
Z[1]

=={{{{{{
,

Please notice that for Mk ⊕ P234[1], all the boundary maps Y → Z, where
(Y, Z) ∈ {(123, 4), (12, 34), (13, 24), (1, 234)}, vanish on the even part. This
implies that the non-KK(D)-equivalent C∗-algebras with this filtered K-
theory can be chosen to have real rank zero.

Theorem 2.5.3 ([ARR, 1.2]). There exists tight, stable, purely infinite,
nuclear, separable C∗-algebras A and B in the bootstrap class B(D) that
are non-KK(D)-equivalent, have isomorphic filtered K-theory, and have real
rank zero.
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2.5.6. The refined invariant FK′ over D. Again following the strat-
egy of R. Meyer and R. Nest, R. Bentmann then defines a C∗-algebra
R4\1 over D as the mapping cone of a generator of NT (1, 4), shows that
FK(R4\1) = M , and defines a refined filtered K-theory FK′ : KK(X) →
Mod(NT ′)c where NT ′ has objects LC(X) ∪ {4\1} and morphism groups
KK∗(D, RZ , RY ).
Again, it turns out that for all C∗-algebrasA overD, FK′(A) has projective

dimension at most 1 in Mod(NT c), and R. Bentmann establishes a UCT for
this refined filtered K-theory.

Theorem 2.5.4 ([Ben10, 6.2.14]). Let A and B be C∗-algebras in KK(D),
and assume that A belongs to the bootstrap class B(D).
Then the sequence

Ext1
NT ′(FK′(A),FK′(B))

ι
↪→ KK∗(D;A,B)

π� HomNT ′(FK′(A),FK′(B)),

where ι is odd and π even and induced by the Kasparov product, is short
exact.
If B also belongs to B(D), then any morphism FK′(A) → FK′(B) in

Mod(NT ′)c lifts to an element in KK0(D;A,B), and then any isomorphism
FK′(A)→ FK′(B) in Mod(NT ′)c lifts to a KK(D)-equivalence.

2.5.7. The counterexample over S. In [Ben10], R. Bentmann also
considers the space S defined as S = {1, 2, 3, 4} with open subsets O(S) =
{∅, 4, 3, 34, 234, 134, 1234}. The representing graph of S is

1 2

3

OO @@���
4

OO^^===
.

R. Bentmann calculated the morphism groups in NT over S and discov-
ered that they are generated by the 24 morphisms fitting into the following
diagram

13
i

##GGGGGGGG

3
i //

i

��1
11111111111111 134

r //

i

##GGGGGGGG

r
;;wwwwwwww
14

i

��444444444444444 123
r //

r

��1
11111111111111 1

δ◦ //

δ
◦

.....

��.
........

3

1234

r
;;wwwwwwww

r

##GGGGGGGG

4
i //

i

FF















234

r //

i
;;wwwwwwww

r

##GGGGGGGG 23

i

DD















124

r //

r

FF















2

δ◦ //

δ ◦�����

GG���������

4

24

i
;;wwwwwwww

subject to some relations.
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Again following the same procedure as R. Meyer and R. Nest, he constructs
an exact object M , namely

Z[1]

  @@@@@@@@

Z[1]2 //

��4444444444444444
Z[1]3 //

""EEEEEEEE

<<yyyyyyyy
Z[1]

��0
000000000000000 Z //

��.
............... Z ◦ //

◦
111111

��1
111111111

Z[1]2

Z[1]

>>~~~~~~~~

  @@@@@@@@

Z[1]2 //

EE
















Z[1]2 //

<<yyyyyyyy

##FFFFFFFFF
0

GG����������������
Z //

GG����������������
Z2 ◦ //

◦







FF











Z[1]2

0

>>|||||||||

with projective dimension 1, defines Mk = M ⊗ Z/k, and shows that there
exists non-KK(S)-equivalent C∗-algebras A and B in B(S) with filtered
K-theory Mk ⊕ P1[1], where P1[1] is

0

��========

Z //

��/
////////////// Z //

��????????

??~~~~~~~~
0

��.
.............. 0 //

��0
00000000000000 Z[1] ◦ //

◦
11111

��1
11111111

Z

Z

@@��������

��=======

Z //

GG���������������
Z2 //

>>~~~~~~~~

  @@@@@@@@ Z

GG���������������
0 //

FF���������������
0 ◦ //

◦







FF










Z

Z

@@�������
.

One can check that the maps Mk(1)0 → Mk(3)1 and Mk(1)0 → Mk(4)1 are
embeddings and therefore nonzero, hence A and B cannot have real rank
zero. Also, one can check that the maps P1(1)0 → P1(3)1 and P1(1)0 →
P1(4)1 are isomorphisms and therefore nonzero, hence SA and SB cannot
have real rank zero either.
So the constructed non-KK(S)-equivariant C∗-algebras with isomorphic

filtered K-theory do not have real rank zero. However, there is no known
finite refinement of filtered K-theory over S that admits a Universal Coeffi-
cient Theorem.

2.6. Filtered K-theory for C∗-algebras of real rank zero

As noted in the previous section, the counterexamples constructed for the
spaces W, Y, and S do not have real rank zero, while the counterexamples
constructed for the space D do.
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In [ARR], a classification result is achieved forW and Y by restricting to
real rank zero C∗-algebras; cf. Theorem 2.1.1.

Theorem 2.6.1 ([ARR, 1.1]). Let X be homeomorphic to one of the four
spaces W, Y, Wop, and Yop. Let A and B be real rank zero C∗-algebras
in the bootstrap class B(X). Then any isomorphism FK(A) → FK(B) in
Mod(NT )c lifts to a KK(X)-equivalence.

Sketch of proof. Consider the space W. By Theorem 2.5.1, it suf-
fices to show that for real rank zero C∗-algebras A and B over W, any iso-
morphism ϕ : FK(A) → FK(B) extends to an isomorphism ϕ′ : FK′(A) →
FK′(B). Note that ϕ should be extended to FK12344(A)→ FK12344(B) in a
way that respects the natural transformations to and from 12344.
For a real rank zero C∗-algebra A over W, the refined filtered K-theory

FK′(A) consists of the groups and maps

341

##FFFF 2341

##FFFF 31

##FFFFF 140

##FFFF 1240

##FFFF 10

41 //

;;xxxxx

##FFFFF 241 // 123441 //

;;xxxx

##FFFF 1341 // 12341

##FFFFF
//

;;xxxxx
21 // 40

##FFFFF
//

;;xxxxx
240 // 123440 //

;;xxxx

##FFFF 1340 // 12340

##FFFFF
//

;;xxxxx
20

141

;;xxxx
1241

;;xxxx
11

;;xxxxx
340

;;xxxx
2340

;;xxxx
30

where Yi denotes FKi
Y (A). For each of the parts

Zi

##FFFF

Yi //

;;xxxxx

##FFFF Z′
i
// Wi+j

Z′′
i

;;xxxx

of the diagram, the sequence

Y0
// Z0 ⊕ Z ′0 ⊕ Z ′′0 // W0

��
W1

OO

Z1 ⊕ Z ′1 ⊕ Z ′′1oo Y1
oo

is exact, hence 123441 is isomorphic to the kernel of 1241 ⊕ 1341 ⊕ 2341 →
12341, and 123440 is isomorphic to the cokernel of 40 → 140 ⊕ 240 ⊕ 340 as
the maps 12340 → 123441 and 123440 → 41 factor through 20 → 41 which
vanishes due to real rank zero.
Using this, ϕ can be extended to isomorphisms on 123441 and 123440. The

constructed maps will respect the natural transformations as the induced
maps on kernel respectively cokernel do. �

The result is somewhat surprising since R. Meyer and R. Nest have con-
structed a real rank zero C∗-algebra A in B(W) satisfying pd FK(A) = 2.
Using the same strategy, it is proved in [ABK] that for suitably nice C∗-

algebras over D, the refined filtered K-theory FK′ can be recovered from an
invariant coarser than filtered K-theory FK. See Theorem 3.2.4. In [ABK],
the same strategy is used to proof that for real rank zero C∗-algebras and
for suitably nice spaces, concrete filtered K-theory can be recovered from a
coarser invariant. See Theorem 3.3.4.
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For the space S, it is most likely that there does not exist a finite refinement
FK′ of FK that admits a UCT. In [Ben10], R. Bentmann has calculated NT
for S and explains why this is unlikely. For this reason, among others, the
strategy in [ARR] does not seem to work for general spaces.
The above results do, however, suggest that despite the counterexamples

of R. Meyer and R. Nest, and R. Bentmann and M. Köhler, filtered K-theory
can still turn out to be useful for classifying suitably nice C∗-algebras.

2.7. The representing objects RY

To give a more hands-on approach to filtered K-theory, in this last section
the focus will be on the representing objects RY . There will not be given
any details of the proof of the equivalence of functors between FKY and
K∗(X;RY ,−) but only the definition of the objects RY .
The construction of R. Meyer and R. Nest in [MN] goes as follows. The

space W will be used as an example. Consider the geometric realization
Ch(X) of the nerve of X, i.e., the simplicial set whose nondegenerate n-
simplices [x0, . . . , xn] are strict chains x0 < · · · < xn. For the space W,
Ch(W) is as follows:

Maps m,M : Ch(X) → X is defined by the inner of a simplex [x0, . . . , xn]
being sent to x0 respectively xn by m respectively M . The C∗-algebras
RY over X are then defined by RY (Z) = C0(m−1(Y ) ∩ M−1(Z)) for all
Y,Z ∈ LC(X). For the space W, the fibres m−1(x) and M−1(x) for x ∈ W
are the following

x 4 3 2 1

m−1(x)

M−1(x)

where a white dot denotes a point not belonging to the fibre.
For Y ∈ LC(X) and U ∈ O(Y ), an extension RY \U ↪→ RY � RU is

obtained as m−1(U) ∩M−1(Z) is a closed subset of m−1(Y ) ∩M−1(Z) for
all Z ∈ LC(X). Recall that for a separable C∗-algebra A over X, this
extension induces the six-term exact sequence in K-theory of the extension
A(U) ↪→ A(Y ) � A(Y \U).
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2.7.1. A concrete description of the representing object R12344.
In this section, a more concrete description of the new representing object
R12344 for the filtered K-theory over the space W is given; cf. Section 2.5.2.
The C∗-algebra R12344 is defined as the mapping cone of a generator of
NT (234, 14) and at the first glance it is a bit surprising that one gets the
same C∗-algebra if one chooses a generator ofNT (134, 24) or ofNT (124, 34)
instead. In the following, it will be clearer why the choice between these three
groups does not matter, and a sketch of proof will be given for the exactness
of the six-term sequences used in the proof of Theorem 2.6.1.
The C∗-algebras over W that will be dealt with here are commutative

and with a spectrum that can be embedded in R2, so they can be defined by
drawing their spectrum. Ideals correspond to closed subsets of the spectrum,
so the structure as a C∗-algebra overW is specified by marking which closed
subsets of the spectrum that correspond to the open subsets of W. Finally,
embeddings of open subsets give injective ∗-homomorphisms and quotients
to closed subsets give surjective ∗-homomorphisms.
As an example, the figure

1 2

3

represents the C∗-algebra A over W defined by A(4) = C0((0, 1) × (0, 1)),
A(14) = C0((0, 1)× (0, 1]), A(24) = C0((0, 1)× (0, 1)∪{(1, 1)}) and A(34) =
C0((0, 1]×(0, 1)). The arrows indicate how the open interval (0, 1) is oriented,
and the numbers indicate the structure as a C∗-algebra over W. The ori-
entation of the interval (0, 1) matters when one desires to calculate induced
maps on K-theory. As another example, the extension R2 ↪→ R234 � R34 is
drawn as follows:

↪→ �
2 2

3 3

A generator of NT (234, 14) = Z[1] is r2
234δ

4
2i

14
4 . The transformation i14

4

is given by the restriction R14 � R4, and the transformation r2
234 is given

by the embedding R2 ↪→ R234 above. The transformation δ4
2 is given by the

extension R2 ↪→ R24 � R4 and is therefore at first more difficult to draw.
The transformation δ4

2 is defined such that the extension R2 ↪→ R24 � R4

induces the element δ̂4
2 in KK1(W;R4, R2) = KK0(W; SR4, R2). Since R2 is

projective, the map KK0(W; SR4, R2) → HomNT (FK(SR4),FK(R2)) is an
isomorphism, so if FK(δ̂4

2) = FK(ϕ) for some ϕ : SR4 → R2, we can conclude
that ϕ̄ = δ4

2 . One can calculate that FK(δ̂4
2) = ±FK(ϕ) — depending on

choice of Bott map — for ϕ : SR4 → R2 defined by

↪→ 2 .
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So NT (234, 14) is generated by α : SR14 → R234 given by

1

� ↪→ 2 ↪→ 2

3 .

Up to W-equivariant isomorphism of the mapping cone 0 α = {(x, y) ∈
C0((0, 1], R234) ⊕ SR14 | x(1) = α(y)}, one can draw the mapping cone
extension SR234 ↪→ 0 α � SR14 as

2

3

↪→ �

2

3

1 1

which up to W-equivariant homotopy is

3

2

↪→ 1

3

2

� 1

. (2.1)

Had one instead of the generator ᾱ of NT (234, 14) used the generator −ᾱ,
one would have gotten the mapping cone extension

2

3

↪→ �

2

3

1 1

which up to W-equivariant homotopy is

3

2

↪→ 1

3

2

� 1

.
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So by Meyer and Nest’s definition of R12344, R12344 is — up to KK(W)-
equivalence — the suspension of the commutative C∗-algebra with spectrum

1

3

2 .

By repeating the construction using the generator r3
134δ

4
3i

24
4 ofNT (134, 24)

instead, one gets — up to KK(W)-equivalence — the mapping cone exten-
sion

3

1 ↪→ 1

3

2

�

2 . (2.2)

And by using the generator r1
124δ

4
1i

34
4 of NT (124, 34), one gets — up to

KK(W)-equivalence — the mapping cone extension

2

1 ↪→ 1

3

2

�

3

. (2.3)

The six new KK(W)-classes arising from the three mapping cone extensions
(2.1), (2.2) and (2.3) are generators for the six cyclic groups NT (k4, 12344)
and NT (12344, ij4) — one sees this by applying KK∗(W;R12344,−) and
KK∗(W;−, R12344) to the three extensions.
In the article [ARR] it is shown that there exist two exact triangles

R1234

(̂i1234ij4 ) ((QQQQQQQQQQQQQ R12344

r̂21234δ̂
4
2 î

14
4 f̂14
◦oo

R124 ⊕R134 ⊕R234

(f̂ ij4)

66mmmmmmmmmmmmm

R12344

(f̂k4) ((PPPPPPPPPPPP R4

f̂234r̂2234δ̂
4
2◦oo

R14 ⊕R24 ⊕R34

(̂ik44 )

77pppppppppppp

with each f ij4 generating the group NT (12344, ij4) respectively, and with
each fk4 generating NT (k4, 12344) respectively. These triangles induce the
six-term exact sequences used in the proof of Theorem 2.6.1.
In [ARR] this is proved by showing that the two triangles arise as mapping

cone extensions — an abstract strategy that is easy to reuse for other spaces
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than the spaceW. One can also show that the two extensions of commutative
C∗-algebras

3
3

2
2

1

1

↪→ 1

3

2

�

2

1

3

↪→ 1

3

2

�

2

1

3

induce the desired exact triangles SR124 ⊕ SR134 ⊕ SR234 → SR12344 →
R1234 → S(SR124 ⊕ SR134 ⊕ SR234) and S2R4 → SR12344 → SR14 ⊕ SR24 ⊕
SR34 → S(S2R4). One sees that the correct KK(W)-classes are induced by
keeping track of what happens to generators of theK-theory and by the same
method as in the proof in [ARR]. However, this more concrete strategy is
far less reusable.



CHAPTER 3

Classification of graph algebras

In this chapter, the notion of a graph algebra is defined, and an overview of
the known results relevant for classification of graph algebras using filterered
K-theory is given.

3.1. Graph algebras

A countable, directed graph E = (E0, E1, r, s) consists of a countable set
E0 of vertices and a countable set E1 of edges together with source and
range maps r, s : E1 → E0. If E0 and E1 are finite, we call E finite. We call
E row-finite if r−1(v) is finite for all vertices v ∈ E0, and a vertex v ∈ E0

is called regular if r−1(v) is finite and nonempty. For a countable directed
graph E, the relations

pv = p∗v = p2
v

pvpw = 0 when v 6= w

s∗ese = ps(e)

pv =
∑

e∈r−1(v)

ses
∗
e when 0 < |r−1(v)| <∞

in (pv)v∈E0 and (se)s∈E1 are bounded and closed, hence the universal C∗-al-
gebra generated by these relations exists, and we denote it C∗(E). A graph
algebra is then a C∗-algebra of the form C∗(E) for some countable, directed
graph E.
In the litterature, two conflicting — but equivalent — definitions of C∗(E)

are used, depending on whether ps(e) or pr(e) is required to be the source
projection of se. Here the convention used by I. Raeburn (cf. [Rae05]) is
followed.
By construction, all graph algebras are separable. By [Kat04, 6.1, 6.6] all

graph algebras are nuclear and lie in the bootstrap class of J. Rosenberg and
R. Schochet. In the following, all graphs will be assumed to be countable
and directed.
The adjacency matrix AE of E is the E0 × E0 matrix defined by

AE(v, w) = |{e ∈ E1 | r(e) = v, s(e) = w}|.
Note that E 7→ AE defines a one-to-one correspondence between countable
directed graphs and, possibly infinite, square matrices over {0, 1, . . . ,∞} up
to conjugacy with a permutation matrix.
When E is finite and pleasantly small, one can easily draw E. The graphs

E1 = (E0
1 , E

1
1 , r1, s1) and E2 = (E0

2 , E
1
2 , r2, s2) defined by E0

1 = {v} and
E1

1 = {e1, . . . , en} with s(ei) = r(ei) = v, and E0
2 = {v1, v2}, and E1

2 =

29
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{e1, . . . , en} with s(ei) = v1 and r(ei) = v2, are then drawn as follows.

(n)
(n)

Their adjacency matrices are
(
n
)
and

(
0 n
0 0

)
, respectively. One can show

that C∗(E1) is isomorphic to the Cuntz algebra On and that C∗(E2) is
isomorphic to the finite dimensional C∗-algebra Mn−1.

3.1.1. Condition (K). An important notion for graphs is condition
(K). A path in E from v to w, for v, w ∈ E0, is a finite sequence e1, . . . , en of
edges in E1 satisfying s(ei) = r(ei+1) for all i < n, r(e1) = w, and s(en) = v.
A graph E is said to satisfy condition (K) if for all v ∈ E0 either there is no
loop based in v, i.e., there is no path from v to v, or there are two distinct
return paths in v, i.e., there are distinct paths e1, . . . , en and f1, . . . , fm from
v to v with r(ei) 6= v for all i < n and r(fi) 6= v for all i < m.
Consider the three examples below. The first graph does not satisfy prop-

erty (K) — since there are many loops but only one return path based in
its single vertex — while the second and the third do. Their associated
C∗-algebras are C(S1), O2, and O2, respectively.

The simplest form of a return path is a cycle. A cycle based in v ∈ E0 is
an edge e ∈ E1 satisfying s(e) = v = r(e). In the examples above, the first
two graphs contain one cycle each, while the third contains two.

3.1.2. The ideal structure of a graph algebra. The ideal structure
of C∗(E) is reflected in the graph E. We define a preorder on E0 by writing
w ≤ v when there is a path from v to w. A subset H of E0 is called
hereditary if H 3 w ≤ v implies v ∈ H; and it is saturated if r−1(v) 6= ∅ and
s(r−1(v)) ⊆ H implies v ∈ H.
For a saturated, hereditary subset H of E0, we consider the subgraphs

EH = (H, r−1(H), r, s) and E\H = (E0\H, s−1(E0\H), r, s). If E satisfies
condition (K), then so do EH and E\H.

Example 3.1.1. Consider the graph E defined by E0 = {v, w} and E1 =
{e1, e2, e3, e4, f1, f2, g1, g2, g3} with s(ei) = r(ei) = r(fi) = v and s(gi) =
r(gi) = s(fi) = w. Then E has one nontrivial saturated hereditary subset,
namely H = {w}. The three graphs E, EH , and E\H are as follows.

(3) (4) (3) (4)

By the theorem below, C∗(E)/IH is isomorphic to O4, and IH is stably
isomorphic to O3.
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Theorem 3.1.2 ([Rae05, 4.9]). Let E be a row-finite, countable, directed
graph satisfying condition (K). Then there is a lattice isomorphism between
ideals in C∗(E) and saturated hereditary subsets in E0, given by mapping an
ideal I to HI = {v ∈ E0 | pv ∈ I}, and by mapping a saturated hereditary
subsets H to the ideal IH generated by {pv | v ∈ H}. The quotient C∗(E)/IH
is isomorphic to C∗(E\H), and C∗(EH) is isomorphic to a full corner in IH .

In particular, ideals and quotients of graph algebras are graph algebras
up to stable isomorphism, hence subquotients of graph algebras are graph
algebras up to stable isomorphism. Also, if E0 is finite, then C∗(E) has
finitely many ideals. So the simple subquotients of a graph algebra are
simple graph algebras up to stable isomorphism. And by [KPR98, 3.11], a
simple graph algebra is either an AF algebra or a Kirchberg algebra. Notice
that all simple graph algebras have real rank zero.
Recall that for an AF algebra A, (K0(A),K0(A)+) is a dimension group,

while for a Kirchberg algebra A, K0(A) equals K0(A)+. So by the classifi-
cation results of G. A. Elliott, and N. C. Phillips and E. Kirchberg, simple
graph algebras are classified by ordered K-theory (K∗(−),K0(−)+) as the
positive cone lets us determine if it is an AF algebra or a Kirchberg algebra.

3.1.3. Real rank zero, pure infiniteness, and K-theory. It is also
reflected in the graph whether the graph algebra has real rank zero and
whether it is purely infinite.
A vertex v ∈ E0 is called a breaking vertex if |r−1(v)| = ∞ while the set

r−1(v)\s−1({w 6= v | w 6≤ v}) is finite and nonempty. If the graph E is
row-finite, then there are no breaking vertices in E. A subset M ⊆ E0 is
called a maximal tail in E if the following three conditions are satisfies:

(1) If w ∈M and v ≤ w, then v ∈M .
(2) If v ∈ M and 0 < |r−1(v)| < ∞, then there exists an edge e ∈ E1

satisfying r(e) = v and s(e) ∈M .
(3) For all v, w ∈M , there exists y ∈M satisfying v ≤ y and w ≤ y.

Theorem 3.1.3 ([HS03, 2.3, 2.5]). Let E be a countable, directed graph.
Then C∗(E) has real rank zero if and only if E satisfies condition (K).
And then C∗(E) is purely infinite if and only if E satisfies condition (K),

E has no breaking vertices, and for each vertex v in each maximal tail M in
E there is a path to v from a return path in E.

Notice that for graph algebras, pure infiniteness implies real rank zero. No-
tice also that if all vertices in E are regular and support at least two return
paths, then C∗(E) is purely infinite.
The Cuntz-Krieger algebras are the graph algebras arising from finite

graphs with adjacency matrices over {0, 1}. Equivalently, the Cuntz-Krieger
algebras are the graph algebras arising from finite graphs E with the prop-
erty that s−1(v) 6= ∅ and r−1(v) 6= ∅ holds for all v ∈ E0; cf. [EW80]. In
particular, a graph algebra of a finite graph with at least one cycle based in
each vertex is a Cuntz-Krieger algebra. The Cuntz-Krieger algebras satisfy-
ing condition (K) are purely infinite.
The K-theory of a graph algebra is also reflected in the underlying graph.
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Theorem 3.1.4 ([Rae05, 7.16]). Let E be a countable, directed graph and
assume that all vertices in E are regular. Let AE be the adjacency matrix
of E. Then K0(C∗(E)) and K1(C∗(E)) are isomorphic to the cokernel and
kernel, respectively, of the map ZE0 AE−1−→ ZE0

, x 7→ xAE − x.
A formula for arbitrary graphs is given in, e.g., [RS04]. In particular, the

K1-group of a graph algebra is always free. By the following theorem, also
the positive cone K+

0 (C∗(E)) in K0(C∗(E)) is reflected in the underlying
graph.

Theorem 3.1.5 ([AMP07, 7],[Tom03]). Let E be a countable, directed
graph and assume that all vertices in E are regular. Let AE be the adjacency
matrix of E. Then the isomorphism K0(C∗(E))→ coker(AE − 1) maps the
positive cone K+

0 (C∗(E)) onto the subset ZE0

+ / im(AE − 1).

A graph E is called transitive if v ≤ w and w ≤ v holds for all v, w ∈ E0.
By a theorem of W. Szymański (cf. [Szy02]) any pair (G,F ) of countable,
abelian groups with F free, can be realized as theK-theory of a graph algebra
C∗(E) with E transitive and row-finite. By a result in [EKTW], the graph
E can be chosen such that furthermore every vertex is the base of at least
two cycles, and E can be chosen to be finite given that G and F are finitely
generated with rankG = rankF . Hence the pair (G,F ) can be realized as
the K-theory of a simple, purely infinite graph algebra, and if G and F are
finitely generated with rankG = rankF , then even as the K-theory of a
simple Cuntz-Krieger algebra of real rank zero.

3.2. Classification of graph algebras using filtered K-theory

For classification of nonsimple graph algebras, filtered K-theory and re-
ductions thereof seem suitable.
Let X be a finite T0-space. As X is finite, there exists for each subset Y of

X a smallest open subset of X containing Y ; we refer to this as the opener
of Y and denote it Ỹ . The open boundary ∂̃(Y ) of Y is defined as Ỹ \Y .
Recall from Section 2.4 that we write x→ y for x, y ∈ X when x is a closed
point in ∂̃(y).
In [ABK], an invariant FKR is defined for C∗-algebras A overX to consist

of the groups and maps

K1(A(x))
δ→ K0(A(∂̃(x)))

i→ K0(A({̃x}))
for all x ∈ X, together with the groups and maps

K0(A({̃y})) i→ K0(A(∂̃(x)))

for all x, y ∈ X for which y → x. For tight C∗-algebras overX, this definition
coincides with the definition of reduced filtered K-theory by G. Restorff
in [Res06], except for two things. First, there is a redundancy in FKR
when {̃y} equals ∂̃(x) and the map K0(A({̃y})) i→ K0(A(∂̃(x))) becomes
an isomorphism. Second, G. Restorff includes the group K0(A(x)) and the
map K0(A({̃x})) r→ K0(A(x)) for all x ∈ X, but for a real rank zero C∗-
algebra A these are naturally isomorphic to the cokernel of K0(A(∂̃(x)))

i→
K0(A({̃x})). Hence the invariants FKR and reduced filtered K-theory are
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not equal but for tight C∗-algebras of real rank zero they are equivalent,
hence FKR is also referred to as reduced filtered K-theory .
A finite T0-space X has the unique path property if for any x, y ∈ X,

x → x1 → · · · → xn → y and x → x′1 → · · · → x′n′ → y implies n = n′

and xi = x′i for all i. All accordion spaces (cf. Theorem 2.4.1) have the
unique path property, and so do the spaces W, Y, and S considered in
Section 2.5. The space D considered in Section 2.5 does not have the unique
path property.
For a space X with the unique path property, an invariant FKB for C∗-

algebras A over X was defined in [ABK] to consist of the groups

K1(A({x})),K0(A({̃x}))
for all x ∈ X, together with the maps

K1(A({x})) r→ K1(A({y})) δ→ K0(A({̃x})) i→ K0(A({̃y}))
for all x→ y. The specified maps in NT exist since X has the unique path
property. The invariant FKB is referred to as filtered K-theory restricted to
the canonical base.
The invariants FKR and FKB are strictly coarser than FK.

Example 3.2.1. For the spacesW and D we compare FKR and FKB with
FK. We restrict to real rank zero C∗-algebras, where boundary maps from
even to odd parts vanish, to make the diagrams simpler and since FKB and
FKR are only useful invariants for real rank zero C∗-algebras. For the space
W, the invariant FKR consists of the groups and maps

31

##FFFFF 140

41 21 // 40

##FFFFF
//

;;xxxxx
240

11

;;xxxxx
340 ,

while FKB consists of the groups and maps

31

##FFFFF 140

12341

##FFFFF
//

;;xxxxx
21 // 40

##FFFFF
//

;;xxxxx
240

11

;;xxxxx
340 ,

and FK for real rank zero C∗-algebras consists of the groups and maps
341 //

##FFFF 2341

##FFFF 31

##FFFFF 140 //

##FFFF 1240

##FFFF 10

41 //

;;xxxxx

##FFFFF 241

;;xxxx

##FFFF 1341 // 12341

##FFFFF
//

;;xxxxx
21 // 40

##FFFFF
//

;;xxxxx
240

##FFFF

;;xxxx
1340 // 12340

##FFFF
//

;;xxxxx
20

141 //

;;xxxx
1241

;;xxxx
11

;;xxxxx
340

;;xxxx
// 2340

;;xxxx
30.

And for the space D, the invariant FKR consists of the groups and maps
31

))SSSSSSSSSSS 240

##FFFF

41 40

##FFFFF

;;xxxxx
11 // 2340 // 12340

21

55kkkkkkkkkkk
340

;;xxxx ,
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while FK for real rank zero C∗-algebras consists of the groups and maps

341

##FFFF 31

##FFFFF 131

##FFFFF
// 240

##FFFF 20

##FFFFF 120

##FFFFF

41

;;xxxxx

##FFFFF 2341

;;xxxxx
//

##FFFFF 12341 // 1231

;;xxxx
//

##FFFF 40

##FFFFF

;;xxxxx
11 // 2340

;;xxxxx
//

##FFFFF 12340 // 1230

;;xxxx

##FFFF 10

241

;;xxxx
21

;;xxxxx
121

;;xxxxx
// 340

;;xxxx
30

;;xxxxx
130

;;xxxxx .

The invariant FKB is not defined for C∗-algebras over D as D does not have
the unique path property. The groups {̃x}0 and {x}1, for x ∈ D, are 40, 340,
240, 12340, 12341, 131, 121, and 11. Notice that the maps δ4

13, δ
3
12, δ

34
1 , δ

24
1 do

not exist in NT as 134 and 124 are not locally closed subsets of D.
3.2.1. Classification of Cuntz-Krieger algebras. G. Restorff de-

fined the reduced filtered K-theory FKR in order to classify Cuntz-Krieger
algebras, and proved the following classification result, reformulated in our
terms.

Theorem 3.2.2 ([Res06, 4.2]). Let X be any finite T0-space, and let A
and B be Cuntz-Krieger algebras that are tight over X. If FKR(A) and
FKR(B) are isomorphic, then A⊗K and B ⊗K are isomorphic.

Two things should be noted about this result. First, this is not a strong
classification, i.e., it does not allow us to lift isomorphisms on FKR to stable
isomorphisms. Second, the proof is based on work by M. Boyle and D. Huang
on shift spaces, [Boy02] and [BH03], using that any Cuntz-Krieger algebra
has an underlying shift space; so the result does not allow us to compare
Cuntz-Krieger algebras with more general C∗-algebras with the same FKR,
and the proof cannot be generalized beyond the class of Cuntz-Krieger alge-
bras. So the result of G. Restorff does not tell us whether phantom Cuntz-
Krieger algebras exist over general X. A phantom Cuntz-Krieger algebra
over X is a tight, purely infinite, nuclear C∗-algebra A in B(X) which is not
stably isomorphic to a Cuntz-Krieger algebra and yet satisfies the property
that FK(A) is isomorphic to FK(B) for some Cuntz-Krieger algebra B which
is tight over X.
Under some restrictions on X, the result of G. Restorff can be improved

slightly in the following way. As Cuntz-Krieger algebras are separable, nu-
clear, and purely infinite and satisfy the property that all simple subquotients
lie in the bootstrap class, the results of E. Kirchberg, R. Meyer and R. Nest,
and R. Bentmann apply to Cuntz-Krieger algebras; cf. Chapter 2. Hence
for Cuntz-Krieger algebras with primitive ideal space isomorphic to an ac-
cordion space X, isomorphisms on FK lift to stable isomorphisms, and we
can compare these Cuntz-Krieger algebras with tight, purely infinite, nuclear
C∗-algebras in B(X). In Section 3.4, the significance of the fact that there
are no phantom Cuntz-Krieger algebras over X will be clarified.

3.2.2. Conjecture for graph algebras. The work of R. Meyer and
R. Nest in [MN] together with the classification result for Cuntz-Krieger
algebras of G. Restorff in [Res06], have inspired S. Eilers, G. Restorff, and
E. Ruiz to conjecture in [ERR] that ordered filtered K-theory FK+ classifies
real rank zero graph algebras with finitely many ideals. Ordered filtered K-
theory FK+(A) for a C∗-algebra A over X, consists of FKST (A) together
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with the positive cones K+
0 (A(Y )) for all Y ∈ LC(X). An isomorphism

on ordered filtered K-theory is then an ST -isomorphism that restricts to
order isomorphisms on the even parts of the groups. As ordered K-theory
classifies the simple graph algebras, and as the simple subquotients of a
graph algebra are again graph algebras, the invariant FK+(A) tells us what
the simple subquotients of A are. The intuitive idea is then that FK+(A)
contains enough information to tell us how these simple subquotients are
glued together to form A.
So far, there are no counterexamples to the conjecture of S. Eilers, G. Res-

torff, and E. Ruiz, and in [ERR] they establish the following partial result.

Theorem 3.2.3 ([ERR, 6.9]). Let X = {x1, . . . , xn} be a finite linear
T0-space with xj ≤ xi when j ≥ i. Let A and B be tight graph algebras
over X of real rank zero, and assume that there exists an i such that either
A(x1), . . . , A(xi) are purely infinite and A(xi+1), . . . , A(xn) are AF alge-
bras, or A(x1), . . . , A(xi) are AF algebras and A(xi+1), . . . , A(xn) are purely
infinite.
If FK+(A) and FK+(B) are isomorphic, then A⊗K and B ⊗K are iso-

morphic.

Their proof combines the UCT of R. Meyer and R. Nest, Theorems 2.3.6
and 2.4.1, with a modification of the proof of E. Kirchberg for Theorem 2.1.1.
Given a KK(X)-equivalence between tight graph algebras over a space X,
they can construct a stable isomorphism between the graph algebras, pro-
vided the KK(X)-equivalence induces positive maps on the K0-groups, and
provided the ideal lattice satisfies some technical conditions which in the
linear case holds under the conditions stated above. Note that S. Eilers,
G. Restorff, and E. Ruiz are not able to lift the KK(X)-equivalence but are
only able to use the existence of a KK(X)-equivalence to construct some
stable isomorphism.

3.2.3. Partial classification results. According to E. Ruiz, the mod-
ification by S. Eilers, G. Restorff, and E. Ruiz of the proof of E. Kirchberg
also works for the spaces Wn = {x0, x1, . . . , xn} with O(Wn) = {U ⊆ Wn |
x0 ∈ U} ∪ {∅}, with no restriction on the position of simple, purely infinite
subquotients in the ideal lattice, by [Rui10]. To complete the proof for the
spaces Wn, S. Eilers, G. Restorff, and E. Ruiz would need to be able to lift
isomorphisms on FK to KK(Wn)-equivalences, at least for C∗-algebras with
the same filtered K-theory as graph algebras. In [ARR] this is done for real
rank zero C∗-algebras over W3 =W; cf. Theorem 2.6.1.
The only known real rank zero counterexample is for the space D, and

in [ABK] the following is proved. As a consequence, there are no phantom
Cuntz-Krieger algebras over D, and all tight, purely infinite graph algebras
over D are classified by reduced filtered K-theory FKR.

Theorem 3.2.4 ([ABK, 8.15]). Let A and B be real rank zero C∗-alge-
bras in the bootstrap class B(D) and assume that K1(A(x)) and K1(B(x))
are free for all x ∈ D. Then any isomorphism FKR(A) → FKR(B) lifts to
a KK(X)-equivalence.
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Sketch of proof. By Theorem 2.5.4, it suffices to extend an isomor-
phism ϕ : FKR(A) → FKR(B) to an isomorphism ϕ′ : FK′(A) → FK′(B).
Note that ϕ should be extended to the remaining groups in a way that re-
spects the natural transformations.
In Example 3.2.1, it is recalled which groups and maps FKR(A) and

FKR(B) consist of. The category NT ′ is

12
◦

CC
f

!!CCCC
34

i

!!CCCCCCC 3
i

!!CCCCCCC

123 ◦δ //

r
=={{{{{{{

r

!!CCCCCCC 4
f // 4\1 ◦

f //

f
=={{{{{{

f

!!CCCCCC 1 ◦δ // 234
i //

r
=={{{{{{{

r

!!CCCCCCC 1234
r // 123

13

◦{{

f
=={{{{

24

i
=={{{{{{{

2

i
=={{{{{{{
.

As in the proof of Theorem 2.6.1, the morphism ϕ can be extended to 20, 30,
12340, 1230, 120, 130, and then 10 as the maps induced on cokernels. E.g.,
20 is isomorphic to the cokernel of 340 → 2340, and 1230 is isomorphic to
the cokernel of 2340 → 20 ⊕ 12340 ⊕ 30, due to real rank zero.

The groups 4\10, 131, 121, 1231, 12341, 2341, 341, and 241 can all be recov-
ered as direct sums of groups and cokernels of maps appearing in FKR(A).
E.g., 131 is isomorphic to 31 ⊕ ker(δ1

3 : 11 → 30), and 12341 is isomorphic
to 41 ⊕ 21 ⊕ 31 ⊕ ker((δ2

1 , δ
3
1) : 11 → 20 ⊕ 30). The split maps must be cho-

sen such that the natural transformations are preservered, and this is done
by following the order specified, starting with 4\10, and making sure that
all natural transformations out of the group in question are respected. Fi-
nally for the group 4\11, we note that it is (isomorphic to) the kernel of
341 ⊕ 10 ⊕ 241 → 2341; cf. the proof of Theorem 2.6.1. �

In [ABK] it is noted that by construction, ϕ′ is an order isomorphism on
the groups K0(A(Y )) → K0(B(Y )) for all Y ∈ LC(D) given that ϕ is for
the groups 40, 240, 340, 2340, and 12340.
The strategy of first lifting an isomorphism on FK to aKK(X)-equivalence

using a modification of the results of R. Meyer and R. Nest, and then using
the KK(X)-equivalence to construct a ∗-isomorphism using a modification
of the result of E. Kirchberg, does not appear to be a useful strategy for
general spaces X. The reason being that both steps depend on X and have
to be dealt with one space at a time. Other methods are therefore needed
for the general case. However, at this point it is extremely useful to establish
partial results and provide examples in order to get a better understanding
of the situation.

3.3. Calculating filtered K-theory for graph algebras

For graph algebras, there is a formula for calculating the filtered K-theory,
by T. M. Carlsen, S. Eilers, and M. Tomforde in [CET], which generalizes the
formula for Cuntz-Krieger algebras by G. Restorff in [Res06]. The formula
for a general graph algebra is slightly complicated to write up, so here only
the case of a graph E satisfying condition (K) and with all vertices regular
is considered.
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For such a graph E and a saturated hereditary subsetH of E0, we consider
the adjacency matrix AE for E, which is a E0 × E0 matrix defined by

AE(v, w) = |{e ∈ E1 | r(e) = v, s(e) = w}|
and the block parts of the matrix consisting of the H × H matrix AH de-
fined by AH(v, w) = AE(v, w), the E0\H × E0\H matrix AE\H defined
by AE\H(v, w) = AE(v, w), and the E0\H × H matrix YH defined by
YH(v, w) = AE(v, w). Notice that AE(v, w) = 0 when v ∈ H and w ∈ E0\H.
We therefore have a commuting diagram

0 // ZH //

AH

��

ZE0 //

AE

��

ZE0\H //

AE\H
��

0

0 // ZH // ZE0 // ZE0\H // 0

with short exact rows, and by the Snake Lemma, this induces a long exact
sequence

0 // ker(AH − 1) // ker(AE − 1) // ker(AE\H − 1) EDBC
GF@A

// coker(AH − 1) // coker(AE − 1) // coker(AE\H − 1) // 0

where one can check that the map ker(AE0\H−1)→ coker(AH−1) is induced
by YH .
Recall Theorems 3.1.2, 3.1.4, and 3.1.5.

Theorem 3.3.1 ([CET, 4.1]). Let E be a countable, directed graph satis-
fying condition (K) where all vertices are regular, and let H be a saturated
hereditary subset of E0.
Then the six-term exact sequence in K-theory induced by the extension

IH ↪→ C∗(E) � C∗(E)/IH is naturally isomorphic to the sequence

coker(AH − 1) // coker(AE − 1) // coker(AE0\H − 1)

0
��

ker(AE0\H − 1)

YH

OO

ker(AE − 1)oo ker(AH − 1).oo

Example 3.3.2. For the graph E with a unique nontrivial saturated
hereditary subset H, considered in Example 3.1.1, the adjacency matrix

is
(

3 0
2 4

)
, and the six-term exact sequence in K-theory induced by the ex-

tension IH ↪→ C∗(E) � C∗(E)/IH collapses to Z/2 ↪→ Z/2⊕Z/3 � Z/3 as
all the K1-groups vanish.

Example 3.3.3. Consider the graph E with adjacency matrix

AE =




5 4 0 0
4 5 0 0
6 2 4 3
1 0 3 4


 .
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Denote the unique nontrivial saturated hereditary subset of E0 by H. Then
the six-term exact sequence of IH ↪→ C∗(E) � C∗(E)/IH is

Z/4⊕ Z

(
1 6 0
0 15 0

)
// Z/2⊕ Z/24⊕ Z


0 1
2 2
0 0


// Z/3⊕ Z(

0
0

)
��

Z

(
2 4

) OO
Z(

0
)oo Z.(

1
)oo

The computation goes as follows. The three matrices

AE − 1 =




4 4 0 0
4 4 0 0
6 2 3 3
1 0 3 3


 , AH − 1 =

(
4 4
4 4

)
, AE\H − 1 =

(
3 3
3 3

)

have Smith normal form

SE =




1 0 0 0
0 2 0 0
0 0 24 0
0 0 0 0


 , SH =

(
4 0
0 0

)
, SE\H =

(
3 0
0 0

)
,

respectively, from which their kernels and cokernels easily can be read. Given
the invertible matrices UE , VE , UH , VH , UE\H , and VE\H over Z for which

SE = VE(AE − 1)UE , SH = VH(AH − 1)UH , SE\H = VE\H(AE\H − 1)UE\H ,

one can calculate the induced maps between the kernels and cokernels, e.g.,
the induced map kerBH → kerBE as

VH

(
1 0 0 0
0 1 0 0

)
V −1
E

and the induced map kerBE\H → cokerBH as

VE\H

(
6 2
1 0

)
UH .

Using the formula of Theorem 3.3.1, it is therefore possible to calculate the
filtered K-theory of a graph algebra. However, even for small primitive ideal
spaces, there is no known algorithm that determines whether two C∗-alge-
bras have isomorphic filtered K-theory. One can only try to either construct
an isomorphism, or to determine various algebraic properties that the two
filtered K-theories do not share. In [ABK], it is shown that for suitably nice
C∗-algebras, including the graph algebras of real rank zero, fewer groups and
maps need to be calculated and compared. For this, the notion of boundary
decomposition property is introduced in [ABK]. A space X with the unique
path property is said to have the boundary decomposition property if for all
Y ∈ LC(X) and all U ∈ O(Y ),

δUC =
∑

U3x→y∈C
r
C∩{y}
C i

{y}
C∩{y}δ

{̃x}
{y}r

U∩{̃x}
{̃x}

iU
U∩{̃x}



3.3. CALCULATING FILTERED K-THEORY FOR GRAPH ALGEBRAS 39

holds when C = Y \U . This rather technical property guarantees that all
boundary maps in NT are determined by restriction and extension maps
together with the boundary maps that appear in FKB.
The accordion spaces and the spaces W, Y, and S of Section 2.5 have

the boundary decomposition property. Also, recall that for these spaces, the
filtered K-theory FK and the concrete filtered K-theory FKST coincide.

Theorem 3.3.4 ([ABK, 6.10]). Assume that X has the boundary decom-
position property and let A and B be real rank zero C∗-algebras over X.
Then any isomorphism ϕ : FKB(A) → FKB(B) extends uniquely to an iso-
morphism Φ: FKST (A) → FKST (B). If ϕ is an order isomorphism, then
so is Φ.

Sketch of proof. As before, the extension to the remaining groups
must respect the natural transformations. As in the proof of Theorem 2.6.1,
this is done by extending to cokernels and kernels. By extending to cokernels,
the claim on positivity is automatically satisfied.
For each open subset U of X,

⊕

z>x∈U
FK0

{̃z}(A) −→
⊕

x∈U
FK0

{̃x}(A) −→ FK0
U (A) −→ 0

is exact as A has real rank zero and X has the unique path property, hence
a map FK0

U (A) → FK0
U (B) is induced. For general Y ∈ LC(X), take open

sets U and V such that Y = U\V ; then

FK0
V (A) −→ FK0

U (A) −→ FK0
Y (A) −→ 0

is exact and a map FK0
Y (A)→ FK0

Y (B) is induced. For FK1
Y (A)→ FK1

Y (B)

a dual version for ({x})x∈X and closed subsets applies. �

Theorem 3.3.5 ([ABK, 8.14]). Assume that X has the boundary decom-
position property and let A and B be real rank zero C∗-algebras over X.
Assume that K1(A(x)) and K1(B(x)) are free groups for all x ∈ X. Then
any isomorphism ϕ : FKR(A) → FKR(B) extends (nonuniquely) to an iso-
morphism Φ: FKST (A)→ FKST (B). If ϕ is positive, then so is Φ.

Sketch of proof. By Theorem 3.3.4 and its proof, it suffices to extend
to FK1

{x}(A) → FK1
{x}(B) for all x ∈ X. This is done inductively over the

ordering ≤ on X, using the same idea as in the proof of Theorem 3.2.4,
starting with the closed points, and using that FK1

{x}(A) is isomorphic to

the direct sum of FK1
{x}(A) and a free subgroup of

⊕
y→x FK1

{y}(A). Again,

the split maps are chosen such that natural transformations out of {x}1 are
respected. �
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Example 3.3.6. Consider the graph E1 with adjacency matrix

AE1 =




9 8 0 0 0 0 0 0
8 9 0 0 0 0 0 0
4 2 5 4 0 0 0 0
0 0 4 5 0 0 0 0
6 2 0 0 4 3 0 0
1 0 0 0 3 4 0 0
5 3 0 0 0 0 7 6
1 1 0 0 0 0 6 7




.

As all vertices in E1 support cycles, all subsets of E0
1 are saturated, and it

is easy to identify the hereditary subsets of E0
1 . We notice that C∗(E1) is

purely infinite and tight over the space W considered in Section 2.5. As the
space W has the boundary decomposition property, it suffices to calculate
FKB(C∗(E1)) by Theorem 3.3.4.
Recall that the invariant FKB consists of the groups and maps

31

##FFFFF 140

12341

##FFFFF
//

;;xxxxx
21 // 40

##FFFFF
//

;;xxxxx
240

11

;;xxxxx
340 ,

and FKB(C∗(E1)) is then

Z

(4 2)

��?????????????????????? Z/2⊕ Z/48⊕ Z

Z3

(
0

−12
−1

) ??�����������������������

(
0
8
0

)
//

(
0
0
1

)
��??????????????????????? Z

(3 3) // Z/8⊕ Z

(
0 42 0
1 36 0

)
??����������������������

(
63 0
57 0

)
//

(
0 0 1 0
1 0 6 0

)
��??????????????????????

Z/72⊕ Z

Z

(4 2)

??����������������������
Z/2⊕ Z/4⊕ Z/8⊕ Z
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by calculations similar to those in Example 3.3.3. Now consider the graph
E2 with adjacency matrix

AE2 =




10 8 8 0 0 0 0 0 0
8 9 8 0 0 0 0 0 0
8 8 9 0 0 0 0 0 0
0 0 0 5 8 0 0 0 0
4 4 6 4 9 0 0 0 0
13 11 0 0 0 7 6 0 0
8 7 3 0 0 3 4 0 0
1 1 1 0 0 0 0 7 6
5 5 7 0 0 0 0 6 7




.

Again, C∗(E2) is purely infinite and tight over W. One can calculate that
FKB(C∗(E2)) is

Z

(4 2)

��?????????????????????? Z/2⊕ Z/48⊕ Z

Z3

(
0

−12
−1

) ??�����������������������

(
0
8
0

)
//

(
0
0
1

)
��??????????????????????? Z

(3 3) // Z/8⊕ Z

(
0 42 0
1 12 0

)
??����������������������

(
9 0
39 0

)
//

(
0 0 1 0
1 0 2 0

)
��??????????????????????

Z/72⊕ Z

Z

(4 2)

??����������������������
Z/2⊕ Z/4⊕ Z/8⊕ Z

which is isomorphic to FKB(C∗(E1)). An isomorphism is given by the iden-
tity on the groups 12341, 31, 21, 11, and 40, together with the isomorphisms

FK0
14(C∗(E1))


1 24 0
0 1 0
0 0 1


// FK0

14(C∗(E2))

FK0
24(C∗(E1))

(
7 0
0 1

)
// FK0

24(C∗(E2))

FK0
34(C∗(E1))


1 0 4 0
0 1 0 0
0 0 1 0
0 0 0 1


// FK0

34(C∗(E2)).

By Theorem 3.3.4, Theorem 2.6.1, and Theorem 2.1.1, this isomorphism lifts
to an isomorphism C∗(E1)⊗K→ C∗(E2)⊗K.
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The graph E2 was constructed from FKB(C∗(E1)) by first realising the
K-theory of the simple subquotients 1, 2, 3, and 4 and then using the proof
of Theorem 3.4.1 to construct 14, 24, and 34. Cf. the proof of Theorem 3.4.2
and the Theorems 3.3.4 and 3.3.5.

Example 3.3.7. Consider the graph E1 with adjacency matrix

AE1 =




5 4 0 0 0 0 0 0
4 5 0 0 0 0 0 0
6 2 4 3 0 0 0 0
1 0 3 4 0 0 0 0
5 3 0 0 7 6 0 0
1 1 0 0 6 7 0 0
0 0 6 4 6 3 9 8
0 0 0 0 1 1 8 9




.

As all vertices in E1 support cycles, all subsets of E0
1 are saturated, and

it is easy to identify the hereditary subsets of E0
1 . We notice that C∗(E1)

is purely infinite and tight over the space D considered in Section 2.5. By
Theorem 3.2.4, it suffices to calculate FKR(C∗(E1)). Recall that FKR for
D consists of the groups and maps

31

))SSSSSSSSSSS 240

##FFFF

41 40

##FFFFF

;;xxxxx
11 // 2340 // 12340

21

55kkkkkkkkkkk
340

;;xxxx .

Then the reduced filtered K-theory FKR(C∗(E1)) of C∗(E1) is

Z

(
3 3

)

��6666666666666666 Z/2 ⊕ Z/24 ⊕ Z



0 6 0 0
1 3 0 0
0 0 0 1




""EEEEEEEEEEEEEEEEEEEE

Z/4 ⊕ Z

(
9 0
3 0

)

  @@@@@@@@@@@@@@@@@@

(
0 18 0
1 12 0

)

>>~~~~~~~~~~~~~~~~~~
Z

(
1 9 2 3

)

// Z/3 ⊕ Z/12 ⊕ Z2




0 64 0 0
2 8 0 0
0 76 −3 0
0 0 2 0




// Z/3 ⊕ Z/96 ⊕ Z2

Z

(
0 2

)

DD����������������
Z/36 ⊕ Z

(
1 2 0 0
0 0 1 0

)

<<yyyyyyyyyyyyyyyyyyyy
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together with FK1
4(C∗(E)) = Z. Now consider the graph E2 with adjacency

matrix

AE2 =




9 8 0 0 0 0 0 0 0
4 5 0 0 0 0 0 0 0
8 7 4 3 0 0 0 0 0
7 9 3 4 0 0 0 0 0
3 3 0 0 13 6 0 0 0
3 5 0 0 12 7 0 0 0
26 27 6 6 12 6 10 8 8
22 25 6 16 11 6 8 9 8
15 16 6 18 12 5 8 8 9




.

Again, C∗(E2) is purely infinite and tight over D. One can calculate that
FKR(C∗(E2)) is

Z

(
3 3

)

��6666666666666666 Z/2 ⊕ Z/24 ⊕ Z



0 6 0 0
0 11 0 0
0 0 0 1




""EEEEEEEEEEEEEEEEEEEE

Z/4 ⊕ Z

(
27 0
21 0

)

  @@@@@@@@@@@@@@@@@@

(
0 18 0
1 0 0

)

>>~~~~~~~~~~~~~~~~~~
Z

(
0 5 2 3

)

// Z/3 ⊕ Z/12 ⊕ Z2




2 32 0 0
1 56 0 0
2 76 −3 0
2 80 2 0




// Z/3 ⊕ Z/96 ⊕ Z2

Z

(
0 2

)

DD����������������
Z/36 ⊕ Z

(
1 6 0 0
0 0 1 0

)

<<yyyyyyyyyyyyyyyyyyyy

together with FK1
4(C∗(E2)) = Z. An isomorphism FKR(C∗(E1))→ FKR(C∗(E2))

is given by the identity on the groups 41, 31, 21, and 40, together with the
isomorphisms

FK0
24(C∗(E1))


1 12 0
0 1 0
0 0 1


// FK0

24(C∗(E2))

FK0
34(C∗(E1))

(
7 0
0 1

)
// FK0

34(C∗(E2))

FK0
234(C∗(E1))


0 8 0 0
1 1 0 0
0 0 1 0
0 0 0 1


// FK0

234(C∗(E2))

FK0
1234(C∗(E1))


1 64 0 0
2 7 0 0
1 8 1 0
0 0 0 1


// FK0

1234(C∗(E2)).
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By Theorem 3.2.4, Theorem 2.5.4, and Theorem 2.1.1, this isomorphism lifts
to an isomorphism C∗(E1)⊗K→ C∗(E2)⊗K.
The graph E2 was constructed from FKR(C∗(E1)) by first realising the

K-theory of the simple subquotients 1, 2, 3, and 4, and then using the proof
of Theorem 3.4.1 to construct first 24 and 34, and then 1234, as in the proof
of Theorem 3.4.2.

3.4. Range of filtered K-theory for graph algebras

For a real rank zero graph algebra A, its filtered K-theory FK(A) has the
properties that K1(A(Y )) is free for all Y ∈ LC(X), as A(Y ) is a graph
algebra, and that the map K0(A(Y \U)) → K1(A(U)) vanishes for all Y ∈
LC(X) and U ∈ O(Y ), as A has real rank zero.
One could then ask if any exactNT -module satisfying these two conditions

is the filtered K-theory of some real rank zero graph algebra.
In [ABK], the range of reduced filtered K-theory FKR is determined for

graph algebras, so it can be concluded by Theorem 3.4.2 combined with
Theorem 3.3.5 and the proof of Theorem 3.2.4, that for accordion spaces
and for the spaces W, Y, D, and S, the answer to the above question is yes.
The construction uses a result of S. Eilers, T. Katsura, M. Tomforde, and
J. West, dealing with extensions.

Theorem 3.4.1 ([EKTW, 4.3, 4.7]). Let E

G1
ε // G2

γ // G3

0
��

F3

δ

OO

F2
γ′
oo F1

ε′
oo

be an exact sequence of abelian groups with F1, F2, F3 free. Suppose that
there exists row-finite matrices A ∈Mn1,n′1

(Z) and B ∈Mn3,n′3
(Z) for some

n1, n
′
1, n3, n

′
3 ∈ {1, 2, . . . ,∞} with isomorphisms

α1 : cokerA→ G1, β1 : kerA→ F1,

α3 : cokerB → G3, β3 : kerB → F3.

Then there exists a row-finite matrix Y ∈Mn3,n′1
(Z) and isomorphisms

α2 : coker

(
A 0
Y B

)
→ G2, β2 : ker

(
A 0
Y B

)
→ F2

such that (α1, α2, α3, β1, β2, β3) gives an isomorphism of complexes from the
exact sequence

cokerA
I // coker

(
A 0
Y B

)
P // cokerB

0

��
cokerB

[Y ]

OO

coker

(
A 0
Y B

)

P ′
oo cokerA

I′
oo

where the maps I, I ′ and P, P ′ are induced by the obvious inclusions or pro-
jections, to the exact sequence E.
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If there exist an A′ ∈ Mn′1,n1
such that A′A − 1 ∈ Mn′1,n

′
1
(Z+), then Y

can be chosen such that Y ∈Mn3,n′1
(Z+). If furthermore a row-finite matrix

Z ∈Mn3,n′1
(Z) is given, then Y can be chosen such that Y −Z ∈Mn3,n′1

(Z+).

For a graph E1 with adjacency matrixA+1, and a graph E3 with adjacency
matrix B + 1, the matrix Y describes how edges should be added from
vertices in E1 to vertices in E3 to form a graph E2 with adjacency matrix(
A 0
Y B

)
+ 1, such that C∗(E1) is stably isomorphic to an ideal in C∗(E2)

with quotient C∗(E3), and such that the desired six-term sequence is induced
by the extension.

Theorem 3.4.2 ([ABK, 9.2]). Let A be a C∗-algebra over X withK1(A(x))
free for all x ∈ X. Then there exists a countable, directed graph E with the
property that all vertices in E are regular and support at least two cycles, and
that C∗(E) is tight over X and has FKR(C∗(E)) isomorphic to FKR(A).
The graph E can be chosen to be finite if K1(A(x)) and K0(A({̃x})) are

finitely generated, and the rank of K1(A(x)) coincides with the rank of the
cokernel of i : K0(A(∂̃(x)))→ K0(A({̃x})), for all x ∈ X.

Notice that the constructed graph algebra C∗(E) is purely infinite, and
that it is a Cuntz-Krieger algebra if E is finite.

Sketch of proof. The idea is to realize the simple subquotients as
simple, purely infinite graph algebras Ex and then apply Theorem 3.4.1
recursively.
Let x ∈ X and assume that for all y, z ∈ ∂̃(x), the vertices in Ey and

Ez have already been connected with edges if needed. By exactness, the
resulting graph E

∂̃(x)
has K0(C∗(E

∂̃(x)
)) ∼= FK0

∂̃(x)
(A), so by applying The-

orem 3.4.1 on

K1(C∗(Ex)) ∼= FK1
{x}(A)→ FK0

∂̃(x)
(A)→ FK{̃x}(A)→ K0(C∗(Ex)),

edges are added for all y ∈ ∂̃(x) from Ey to Ex such that FK0

{̃x}(A) is
realized.
To assure that C∗(E) is tight over X, the graphs Ex are chosen such that

all vertices are regular and support at least two cycles, hence ideals in C∗(E)
correspond to hereditary subsets in E0, and by Theorem 3.4.1 we can make
the construction such that there are edges from vertices in Ey to vertices in
Ex exactly when y > x. �

3.4.1. Extensions of Cuntz-Krieger algebras. For AF algebras, an
extension of AF algebras is always an AF algebra. For an extension I ↪→
A � A/I of real rank zero C∗-algebras I and A/I, the C∗-algebra A has
real rank zero if and only if the induced map on K-theory K0(A/I)→ K1(I)
vanishes. And for an extension I ↪→ A� A/I of stable rank one C∗-algebras
I and A/I, the C∗-algebra A has stable rank one if and only if the induced
map on K-theory K1(A/I)→ K0(I) vanishes.
It is desirable to establish a similar result for real rank zero Cuntz-Krieger

algebras, i.e., that given an extension I ↪→ A � A/I of stabilized real rank
zero Cuntz-Krieger algebras I and A/I, the C∗-algebra A is a stabilized real
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rank zero Cuntz-Krieger algebra if and only if some condition on the level of
K-theory is satisfied.
Knowing the range of reduced filtered K-theory FKR (cf. Theorem 3.4.2)

and that it is a complete invariant, we can establish such a result. As
we restrict to Cuntz-Krieger algebras of real rank zero, the condition that
K0(A/I) → K1(I) vanishes is necessary. It turns out to be sufficient, pro-
vided the primitive ideal space is an accordion space or homeomorphic to
one of the spaces W, Wop, Y, Yop, and D, since such an extension would
otherwise be a phantom Cuntz-Krieger algebra.

Corollary 3.4.3 ([ABK, 9.5]). Let X be a finite T0-space and assume
that FKR is a complete invariant for real rank zero, purely infinite, nuclear,
separable C∗-algebras that are tight over X and satisfy the property that for
all x ∈ X, A(x) is in the bootstrap class and K1(A(x)) is free.
Let I ↪→ A � B be an extension of C∗-algebras where A has primitive

ideal space X. Then A is stably isomorphic to a real rank zero Cuntz-Krieger
algebra if and only if I and A/I are stably isomorphic to real rank zero Cuntz-
Krieger algebras, and the induced map K0(A/I)→ K1(I) vanishes.



Articles

Here follows first the article Filtrated K-theory of real rank zero C∗-alge-
bras, [ARR], which is written with G. Restorff and E. Ruiz and is to appear
in International Journal of Mathematics, and then the article Reduction of
filtered K-theory and a characterization of Cuntz-Krieger algebras, [ABK],
which is written with R. Bentmann and T. Katsura.
Please note that in the article Filtrated K-theory of real rank zero C∗-

algebras, the term “filtrated K-theory” is used instead of the term “filtered
K-theory”. The authors made this choice since the subject of the article
is a question that was raised in response to the article C∗-algebras over
topological spaces: Filtrated K-theory, [MN], by R. Meyer and R. Nest.
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FILTRATED K-THEORY FOR REAL RANK ZERO
C∗-ALGEBRAS

SARA ARKLINT, GUNNAR RESTORFF, AND EFREN RUIZ

Abstract. Using Kirchberg KKX -classification of stable, purely infinite, nu-
clear, separable C∗-algebras with finite primitive ideal space, Bentmann showed
that filtrated K-theory classifies stable, purely infinite, nuclear, separable C∗-
algebras that satisfy that all simple subquotients are in the bootstrap class
and that the primitive ideal space is finite and of a certain type, referred
to as accordion spaces. This result generalizes the results of Meyer-Nest in-
volving finite linearly ordered spaces. Examples have been provided, for any
finite non-accordion space, that isomorphic filtrated K-theory does not imply
KKX -equivalence for this class of C∗-algebras. As a consequence, for any
non-accordion space, filtrated K-theory is not a complete invariant for sta-
ble, purely infinite, nuclear, separable C∗-algebras that satisfy that all simple
subquotients are in the bootstrap class.

In this paper, we investigate the case for real rank zero C∗-algebras and
four-point primitive ideal spaces, as this is the smallest size of non-accordion
spaces. Up to homeomorphism, there are ten different connected T0-spaces
with exactly four points. We show that filtrated K-theory classifies real rank
zero, stable, purely infinite, nuclear, separable C∗-algebras that satisfy that
all simple subquotients are in the bootstrap class for eight out of ten of these
spaces.

1. Introduction

The C∗-algebra classification programme initiated by G. A. Elliott in the early
seventies has seen a rapid development during the past 20 years. The notion of real
rank zero C∗-algebras introduced by G. K. Pedersen and L. G. Brown in the late
eighties has turned out to be of particular interest in connection with classification
of C∗-algebras. Until the mid-nineties most results were concerned with the sta-
bly finite algebras, when people such as M. Rørdam, N. C. Phillips, E. Kirchberg
and D. Huang classified some purely infinite, nuclear, separable C∗-algebras in the
bootstrap class. All these had finitely many ideals — in fact, almost all cases were
either the simple case or the one non-trivial ideal case. D. Huang was also able to
classify purely infinite Cuntz-Krieger algebras with finite K-theory (implying that
all the K1-groups are zero). In contrast to the stably finite case, the positive cone
of purely infinite C∗-algebras carries no extra information, so it was clear from the
beginning, that to classify non-simple purely infinite C∗-algebras one needs to come
up with a new invariant, which also encodes the ideal structure and the K-theory
of all ideals and quotients.
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The main ingredients of the proof of N. C. Phillips and E. Kirchberg were the
UCT of J. Rosenberg and C. Schochet and a result saying that every KK-equivalence
between (simple, purely infinite, stable, nuclear, separable) C∗-algebras can be lifted
to a ∗-isomorphism between the algebras. Shortly after, E. Kirchberg generalized
this result to X-equivariant KK-theory, where X is (homeomorphic to) the prim-
itive ideal space of the C∗-algebra. The only ingredient thus missing to classify
purely infinite, nuclear, separable, stable C∗-algebras seemed to be to find the right
invariant and prove a UCT for X-equivariant KK-theory with this new invariant.
For the case with one non-trivial ideal, A. Bonkat reproved Rørdams result by pro-
viding a UCT for this class using the cyclic six-term exact sequence in K-theory.
The second named author generalized this to two non-trivial ideals by including
four cyclic six-term exact sequences. R. Meyer and R. Nest, and R. Bentmann
recently proved that the obvious guess of an invariant gives a UCT for certain ideal
lattices — the so-called accordion spaces (including, e.g., all C∗-algebras with ex-
actly three primitive ideals). In turn they also provide a series of counter-examples,
where we do not have a UCT. They actually find examples of stable, purely infi-
nite, nuclear, separable C∗-algebras in the bootstrap class with finitely many ideals
having isomorphic invariants without being isomorphic. This result seems to be in
sharp contrast to the stable classification result for all purely infinite Cuntz-Krieger
algebras with finitely many ideals obtained by the second named author by use of
methods from shift spaces.

We find it very likely that the reason that Cuntz-Krieger algebras are classifiable,
is the restrictive nature of their K-theory. In this paper we examine what happens
to real rank zero algebras in the cases where the primitive ideal space has exactly
four points. Moreover, we assume that the space is connected (since otherwise
the algebras are direct sums of algebras with fewer than four primitive ideals).
Also, all the basic counterexamples of R. Meyer, R. Nest, and R. Bentmann are
formulated for algebras with four primitive ideals. Up to homeomorphism, there
are ten different connected T0-spaces with exactly four points. These are

O(X1) = {∅, {4}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}},
O(X2) = {∅, {4}, {3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}},
O(X3) = {∅, {4}, {3, 4}, {2, 4}, {2, 3, 4}, {1, 2, 3, 4}},
O(X4) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}},
O(X5) = {∅, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}},
O(X6) = {∅, {3}, {4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}},
O(X7) = {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}},
O(X8) = {∅, {1}, {4}, {1, 2}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}},
O(X9) = {∅, {1}, {3}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}},
O(X10) = {∅, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}.

R. Meyer and R. Nest, and R. Bentmann have proved that the spaces X7, X8, X9

and X10 have a UCT, and thus we can classify stable, purely infinite, nuclear,
separable C∗-algebras in the bootstrap class with these spaces as primitive ideal
spaces. Moreover they have provided counter-examples for classification for all the
spaces X1, X2, X3, X4, X5, X6. In this paper we prove the following
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Theorem 1.1. Let A and B be purely infinite, nuclear, separable C∗-algebras of
real rank zero in the bootstrap class of R. Meyer and R. Nest (cf. [MN09, 4.11]).
Assume that the primitive ideal space of A and B both are homeomorphic to Xi for
an i = 1, 2, 4, 5, 7, 8, 9, 10.

(1) If A and B are stable, then every isomorphism from FK(A) to FK(B) can
be lifted to a ∗-isomorphism from A to B.

(2) If A and B are unital, then every isomorphism from FK(A) to FK(B) that
preserves the unit can be lifted to a ∗-isomorphism from A to B.

Theorem 1.2. There exist stable, purely infinite, nuclear, separable C∗-algebras
of real rank zero in the bootstrap class of R. Meyer and R. Nest (cf. [MN09, 4.11])
with the primitive ideal space homeomorphic to X3, which have isomorphic filtrated
K-theory without being isomorphic.

where FK denotes the functor filtrated K-theory which will be defined shortly.
For the case where the primitive ideal space is isomorphic to X6 there are still no

counterexamples for the real rank zero case — however our methods do not apply
as there is no known finite refinement of FK which gives a UCT.

In general the unital part of Theorem 1.1 follows from the stable part by using
results from [RR07]. For X7, Theorem 1.1 is proved by R. Meyer and R. Nest
in [MN, 4.14], for X8, X9 and X10, it is proved by R. Bentmann in [Ben10, 5.4.2].
In Section 2 of this paper we set up notation and prove some preliminary results
used later in this paper. In Sections 3 and 4 Theorem 1.1 is proved for X1, X2,
X4 and X5 (cf. Corollaries 3.9 and 4.6 and Remarks 3.10 and 4.7). The proofs
rely on the result [Kir00, 4.3] of E. Kirchberg that KK(X)-equivalences lift to X-
equivariant isomorphisms for stable, purely infinite, nuclear, separable C∗-algebras
with primitive ideal space homeomorphic to a finite T0-space X. Theorem 1.2 is
proved in Section 5.

2. Preliminaries and notation

In this section, we briefly discuss C∗-algebras over a topological space X and the
invariant introduced by R. Meyer and R. Nest in [MN] called filtrated K-theory.
We refer the reader to [MN] for details.

We would like to note that there are other invariants in the literature which
are closely related to filtrated K-theory. Examples are filtered K-theory and ideal
related K-theory. It has been proved by R. Meyer and R. Nest in [MN] and R. Bent-
mann in [Ben10, 5.4.2] that for the spaces Xi that these invariants are naturally
isomorphic to filtrated K-theory. It is not known if these invariants are naturally
isomorphic for all finite topological spaces.

2.1. C∗-algebras over a topological space X. A C∗-algebra over a topologi-
cal space X is a pair (A,ψ) consisting of a C∗-algebra A and a continuous map
ψ : Prim(A) → X where Prim(A) denotes the primitive ideal space of A. Assume
from now on that X is a finite topological space satisfying the T0 separation axiom,
i.e., such that {x} 6= {y} for all x, y ∈ X with x 6= y. Let O(X) denote the open
subsets of X, and let I(A) denote the lattice of (two-sided, closed) ideals of A. A
C∗-algebra over X can then equivalently be defined as a pair (A,ψ) consisting of a
C∗-algebra A and a map ψ : O(X)→ I(A) that preserves infima and suprema. We
then write A(U) for ψ(U).
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The locally closed subsets of X are denoted by LC(X) = {U\V | V,U ∈
O(X), V ⊆ U}, and the connected, non-empty, locally closed subsets of X are de-
noted by LC(X)∗. For Y ∈ LC(X) we define A(Y ) = A(U)/A(V ) when Y = U\V
for some V,U ∈ O(X) satisfying V ⊆ U . Up to canonical isomorphism, A(Y ) does
not depend on the choice of U and V .

For C∗-algebras A and B overX, we say that a ∗-homomorphism ϕ : A→ B isX-
equivariant if ϕ(A(U)) ⊆ B(U) holds for all U ∈ O(X). An extension A ↪→ B � C
is called X-equivariant if it induces an extension A(U) ↪→ B(U) � C(U) for all
U ∈ O(X).

E. Kirchberg has constructedX-equivariant KK-theory KK∗(X;−,−), also called
ideal related KK-theory and here referred to as KK(X)-theory. We denote by
KK(X) the category of separable C∗-algebras over X with KK0(X)-classes as mor-
phism groups. In [MN09, 3.11], R. Meyer and R. Nest show that the category
KK(X) equipped with the suspension automorphism S and mapping cone trian-
gles as distinguished triangles is triangulated; so mapping cones of X-equivariant
∗-homomorphisms give exact triangles, and so do extensions over X that split by
an X-equivariant completely positive contraction.

2.2. Filtrated K-theory FK and the UCT. One defines for each Y ∈ O(X) the
functor FKY by FKY (A) = K∗(A(Y )). We write FKi

Y (A) for Ki(A(Y )). In [MN]
R. Meyer and R. Nest construct commutative C∗-algebras RY over X such that
KK∗(X;RY ,−) and FKY are equivalent functors.

By the Yoneda Lemma, cf. [ML98, 3.2], the set NT (Y,Z) of natural transforma-
tions from the functor FKY to the functor FKZ is then given by KK∗(X;RZ , RY ).
Given α ∈ KK∗(X;RZ , RY ) we denote by ᾱ the corresponding element inNT (Y, Z)
given by α�− where −�− denotes the X-equivariant Kasparov product. Given
f ∈ NT (Y,Z), we let f̂ denote the corresponding element in KK∗(X;RZ , RY ).
The functor FK is then defined as the family of functors (FKY )Y ∈LC(X)∗ to-

gether with the sets NT (Y, Z) of natural transformations. The target category
of FK is the category of modules over the ring NT =

⊕
Y,Z∈LC(X)∗ NT (Y,Z).

A homomorphism FK(A) → FK(B) is then a family of homomorphisms (ϕY )
that respects the natural transformations. Kasparov multiplication induces a map
KK∗(X;A,B) → Hom(FK(A),FK(B)), and for A = RY this map is an isomor-
phism.
In [MN] R. Meyer and R. Nest establish a UCT for KK(X)-theory, i.e., they

establish exactness of

Ext1NT (FK(A),FK(B)) ↪→ KK∗(X;A,B) � HomNT (FK(A),FK(B))

for A and B separable C∗-algebras over X with A belonging to the bootstrap class
B(X) defined by R. Meyer and R. Nest, cf. [MN09, 4.11], and with FK(A) having
projective dimension at most 1 as a module over NT . By construction, FK(RY )
has projective dimension 0 for all Y ∈ LC(X)∗. By [MN09, 4.13], a nuclear C∗-al-
gebra over X belongs to B(X) if and only if its simple subquotients belong to the
bootstrap class of J. Rosenberg and C. Schochet.

2.3. Construction of RY . The C∗-algebras RY are constructed as follows. Define
a partial order on X by x ≤ y when x ∈ {y}. The order complex Ch(X) is the geo-
metric realisation of the simplicial set whose nondegenerate n-simplices [x0, . . . , xn]
are strict chains x0 < · · · < xn. Maps m,M : Ch(X) → X are then defined by
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the inner of a simplex [x0, . . . , xn] being sent to x0 by m and to xn by M . The
C∗-algebras RY over X are then defined by RY (Z) = C0(m−1(Y ) ∩M−1(Z)) for
all Y,Z ∈ LC(X).

For Y ∈ LC(X) and U ∈ O(Y ), we then get X-equivariant extensions RY \U ↪→
RY � RU . The natural transformation given by RY \U ↪→ RY is denoted r

Y \U
Y

and called a restriction map, the natural transformation given by RY � RU is
denoted by iYU and called an extension map, and the natural transformation given
by RY \U ↪→ RY � RU is denoted by δUY \U and called a boundary map. For a
C∗-algebra A over X, these natural transformations are the ones appearing in the
six-term exact sequence induced by the extension A(U) ↪→ A(Y ) � A(Y \U). It
is unknown whether there exists finite T0-spaces X over which the ring NT is
not generated by transformations of this form, but for the spaces X1, X2, . . . , X10

considered in this paper, this is not the case.

3. The counterexample of Meyer and Nest

We now restrict to the space X1 = {1, 2, 3, 4} with O(X1) = {∅} ∪ {U ⊆ X1 |
4 ∈ U}. We abbreviate, e.g., {1, 2, 3} to 123. A C∗-algebra A over X1 is then an
extension of the form A(4) ↪→ A� A(1)⊕A(2)⊕A(3). The ordering on X induced
by its topology is then defined by i ≤ 4 for all i ∈ X1, its Hasse diagram (or, more
correctly, the Hasse diagram of the inverse order relation) is

1 2 3

4

__????
OO ??����

,

and LC(X1)∗ = {4, 14, 24, 34, 124, 134, 234, 1234, 1, 2, 3}. In [MN] it is shown that
the ring NT =

⊕
Y,Z∈LC(X1)∗

NT (Y,Z) is generated by natural transformations
i, r and δ that are induced by six-term exact sequences, and the indecomposable
transformations are of infinite order and fit into the following diagram

14
i //
i

!!CCCCCCC 124
i

!!CCCCCCC 1
δ◦

CCCC

!!CCCC

4

i

=={{{{{{{{ i //

i

!!CCCCCCCC 24

i

=={{{{{{{

i

!!CCCCCCC 134
i // 1234

r

=={{{{{{{{ r //

r

!!CCCCCCCC 2
δ◦ // 4

34

i

=={{{{{{{ i // 234

i
=={{{{{{{

3

δ◦{{{{

=={{{{

where the six squares commute and the sum of the three transformations from 1234
to 4 vanishes.

3.1. The refined invariant. In [MN], R. Meyer and R. Nest refine the invariant
FK to an invariant FK′. They prove a UCT for this refined invariant, so for A
and B in the bootstrap class B(X1) one can lift isomorphisms between FK′(A)
and FK′(B) to KK(X1)-equivalences, and by combining this with the classification
result [Kir00, 4.3] of E. Kirchberg conclude that it strongly classifies the stable,
purely infinite, separable, nuclear C∗-algebras A that are tight over X1 and whose
simple subquotients A(4), A(1), A(2) and A(3) lie in the bootstrap class, see [MN,
5.14, 5.15].
In [RR07], the second and third author showed how one can strongly classify a

class of unital properly infinite C∗-algebras given that the this class are strongly
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classified up to stable isomorphism. Since FK′(·) strongly classifies the class of
stable, purely infinite, separable, nuclear C∗-algebras A that are tight over X1, by
Theorem 2.1 of [RR07], FK′(·) together with class of the unit strongly classifies the
class of unital, purely infinite, separable, nuclear C∗-algebras A that are tight over
X1.
The invariant is defined by constructing a C∗-algebra R12344 over X1 and adding

KK∗(X1;R12344,−) to the family of functors. The indecomposable transformations
in the larger ring NT ′ =

⊕
Y,Z∈LC(X1)∗∪{12344}NT (Y, Z) fit into the following

diagram:

14

!!CCCCCCC 124
i

!!CCCCCCC 1
δ◦

CCCC

!!CCCC

4

i

=={{{{{{{{ i //

i

!!CCCCCCCC 24 // 12344

=={{{{{{{
//

!!CCCCCCC 134
i // 1234

r

=={{{{{{{{ r //

r

!!CCCCCCCC 2
δ◦ // 4

34

=={{{{{{{
234

i
=={{{{{{{

3

δ◦{{{{

=={{{{

(3.1)

The C∗-algebra R12344 is the mapping cone of a generator of the cyclic free group
NT (234, 14) and its filtrated K-theory is

0
i //
i

!!CCCCCCCC Z
i

!!CCCCCCC Z
δ
◦

CCCC

!!CCC

Z[1]

i
=={{{{{{{

i //

i

!!CCCCCCC 0

i

=={{{{{{{{

i

!!CCCCCCCC Z i // Z2

r
=={{{{{{{

r //

r

!!CCCCCCC Z δ◦ // Z[1]

0

i

=={{{{{{{{ i // Z

i
=={{{{{{{

Z

δ ◦{{{{

=={{{

(3.2)

where the three maps i1234ij4 are given by the three coordinate embeddings Z →
Z3/(1, 1, 1), the three maps rk1234 are given by the three projections Z3/(1, 1, 1)→
Z2/(1, 1) onto coordinate hyperplanes, and the three maps δ4k are the identity.

Lemma 3.1. Assume that FKY (A) and FKY (R12344) are isomorphic for all Y ∈
LC(X1)∗ and that i1234124 ⊕ i1234134 : FK124(A)⊕FK134(A)→ FK1234(A) is an isomor-
phism. Then FK(A) and FK(R12344) are isomorphic as NT -modules and A and
R12344 are KK(X1)-equivalent.

Proof. Define for each Y ∈ LC(X)∗ an NT -module PY as PY (Z) = NT (Y,Z).
Then PY is freely generated by idY ∈ PY (Y ) as an NT -module. Define j : P1234 →
P124⊕P134⊕P234 by f 7→ fi1234124 + fi1234134 + fi1234234 . Then FK(R12344) is isomorphic
to coker j as NT -modules, cf. [MN, Section 5], with im j generated by i1234124 +i1234134 +
i1234234 .
Hence an NT -morphism FK(R12344) → FK(A) can be defined by choosing el-

ements gY ∈ FKY (A), Y ∈ {124, 134, 234}, satisfying i1234124 (g124) + i1234134 (g134) +
i1234234 (g234) = 0, and defining the map by idY 7→ gY for Y ∈ {124, 134, 234} and
expanding by NT -linearity.
If gY generates FKY (A) for all Y ∈ {124, 134, 234}, then the morphism will be

an isomorphism: it is automatically bijective FKZ(R12344) → FKZ(A) for Z ∈
{124, 134, 234}, by the assumptions in the lemma it is therefore surjective and
hence bijective for Z = 1234, and by exactness it then follows that it is bijective
for Z ∈ {1, 2, 3} whereby bijectivity for Z = 4 also follows, cf. the Diagram (3.2).
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Let gY be a generator of FKY (A) for Y ∈ {124, 134, 234}. Since i1234124 ⊕ i1234134

is an isomorphism, FK1234(A) is spanned by i1234124 (g124) and i1234134 (g134) so we may
write i1234234 (g234) = mi1234124 (g124)+ni1234134 (g134) for some m,n ∈ Z. Since FK34(A) =
0, FK24(A) = 0 and FK14(A) = 0, the four maps r2234 : FK234(A) → FK2(A),
r3234 : FK234(A) → FK3(A), r2124 : FK124(A) → FK2(A) and r3134 : FK134(A) →
FK3(A) are isomorphisms, so r2124(g124) and r2234(g234) = mr2124(g124) both generate
FK2(A), and r3134(g134) and r3234(g234) = nr3134(g134) both generate FK3(A), so
m,n ∈ {±1}. By replacing g124 with −mg124 and g134 with −ng134 the required is
fulfilled.

In the discussion after the proof of Lemma 5.9 in [MN], we have that the natural
homomorphism from KK(X1;R12344, A) to Hom(FK(R12344),FK(A)) is an isomor-
phism. Since FK(A) and FK(R12344) are isomorphic as NT -modules, we have that
A and R12344 are KK(X1)-equivalent. �

Lemma 3.2. There exists an exact triangle

R1234

ϕ !!CCCCCCC R12344
π◦oo

R124 ⊕R134 ⊕R234

ι

=={{{{{{{

satisfying that ϕ̄ = (i1234124 , i
1234
134 , i

1234
234 ) ∈ ⊕NT (ij4, 1234), that π̄ generates the

group NT (1234, 12344), and that ῑ = (f124, f134, f234) ∈ ⊕NT (12344, ij4) with
each f ij4 generating NT (12344, ij4) respectively.

Proof. Let ϕ : R1234 → R124 ⊕R134 ⊕R234 be given by restriction to subsets; then
ϕ̄ = (i1234124 , i

1234
134 , i

1234
234 ). Constructing the mapping cone 0 ϕ of ϕ, we get an exact

triangle
R1234

ϕ !!CCCCCCC S 0 ϕ
π◦oo

R124 ⊕R134 ⊕R234

ι

=={{{{{{{

and by applying KK∗(X1;RY ,−) = FKY and calculating FKY (ϕ), one sees that
FKY (S 0 ϕ) and FKY (R12344) are isomorphic for all Y ∈ LC(X1)∗, cf. Diagram (3.2).

Furthermore one sees that FKij4(ι) are isomorphisms, and that FK1234(ι) is
surjective as FK1234(ϕ) is injective and (using standard generators) is given by
Z 3 x 7→ (x, x, x) ∈ Z ⊕ Z ⊕ Z. Using that FKY (ι) respects the natural transfor-
mations, and that the natural transformation FK124(

⊕
Rij4)⊕ FK134(

⊕
Rij4)→

FK1234(
⊕
Rij4) is given by Z⊕ Z 3 (x, y) 7→ (x, y, 0) ∈ Z⊕ Z⊕ Z (using standard

generators), one can then check that FK124(S 0 ϕ)⊕FK134(S 0 ϕ)→ FK1234(S 0 ϕ)
is an isomorphism. Hence S 0 ϕ and R12344 are KK(X1)-equivalent by Lemma 3.1.

Therefore π and ι induce natural transformations, and since all the involved
groups of natural transformations are cyclic and free, we may write π̄ = nf1234
with f1234 generating NT (1234, 12344) and ῑ = (nij4f

ij4) with f ij4 generating the
group NT (12344, ij4).

Then FKij4(ι) = nij4 FKij4(f̂ ij4), since FKij4(R124⊕R134⊕R234) = FKij4(Rij4),
so as FKij4(ι) is an isomorphism Z→ Z, we see that nij4 = ±1.

But FKY (π) = 0 for all Y . However, since FKij4(R1234) = 0 and FK1234(R1234) =
Z, we get by applying KK∗(X1;−, R1234) to the exact triangle that π̄ = nf1234 on
R1234 is an isomorphism Z→ Z[1], hence n = ±1. �
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Lemma 3.3. There exists an exact triangle

R12344

π !!CCCCCCC R4
ι◦oo

R14 ⊕R24 ⊕R34

ϕ

=={{{{{{{

satisfying that ϕ̄ = (i144 , i
24
4 , i

34
4 ) ∈ ⊕NT (4, k4), that ῑ generates NT (12344, 4),

and that π̄ = (f14, f24, f34) ∈⊕NT (k4, 12344) with each fk4 generating the group
NT (k4, 12344) respectively.

Proof. Let ϕ : R14 ⊕ R24 ⊕ R34 → M3(R4) be given by restriction to subsets such
that ϕ̄ = (i144 , i

24
4 , i

34
4 ) and construct the mapping cone 0 ϕ of ϕ. By calculating

FKY (ϕ) and by applying FKY to the mapping cone triangle

0 ϕ

π !!CCCCCCC R4
ι◦oo

R14 ⊕R24 ⊕R34

ϕ

=={{{{{{{

we see that FKY (0 ϕ) ∼= FKY (R12344) for all Y ∈ LC(X1)∗.
Furthermore we see that FK4(ι) and FKk(π) are isomorphisms, and that FKij4(π)

and FK1234(π) are injective as FKij4(ϕ) and FK1234(ϕ) are surjective and (by
using standard generators) are given by Z ⊕ Z 3 (x, y) 7→ x + y ∈ Z respectively
Z⊕ Z⊕ Z 3 (x, y, z) 7→ x+ y + z ∈ Z.

Using that FKY (π) respects the natural transformations, and that the natural
transformation FK124(

⊕
Rk4)⊕FK134(

⊕
Rk4)→ FK1234(

⊕
Rk4) is given by (Z⊕

Z)⊕(Z⊕Z) 3 (x, y, z, w) 7→ (x+z, y, w) ∈ Z⊕Z⊕Z (using standard generators), one
can then check that FK124(0 ϕ) ⊕ FK134(0 ϕ) → FK1234(0 ϕ) is an isomorphism.
Hence 0 ϕ and R12344 are KK(X1)-equivalent by Lemma 3.1.

Therefore π and ι induce natural transformations, so we may write ῑ = nf4

with f4 generating NT (12344, 4) and π̄ = (nk4fk4) with fk4 generating the group
NT (k4, 12344).

As FK4(ι) = nFK4(f̂4) is an isomorphism Z → Z[1], we see that n = ±1. And
as FKk(R14 ⊕ R24 ⊕ R34) = FKk(Rk), we see that FKk(π) = nk4 FKk(f̂k4), so as
FKk(π) is an isomorphism Z→ Z, we see that nk4 = ±1. �

Lemma 3.4. There exist natural transformations f14, f24, f34, f124, f134, f234 such
that 〈fk4〉 = NT (k4, 12344) and

〈
f ij4

〉
= NT (12344, ij4) and such that the se-

quences

FK1234(A)
fm4i

m4
4 δ4nr

n
1234◦ // FK12344(A)

(fij4)
zzttttttttt

FK124(A)⊕ FK134(A)⊕ FK234(A)

(i1234ij4 )

ddJJJJJJJJJ

and

FK12344(A)
δ4mr

m
mn4f

mn4

◦ // FK4(A)

(ik44 )
zzttttttttt

FK14(A)⊕ FK24(A)⊕ FK34(A)

(fk4)

ddJJJJJJJJJ
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are exact for all C∗-algebras A over X1 and all m,n ∈ {1, 2, 3} with m 6= n.

Proof. This follows from Lemmas 3.2 and 3.3 by applying KK∗(X1;−, A) and using
that by the Diagram (3.1) the transformation fm4i

m4
4 δ4nr

n
1234 generates the group

NT (1234, 12344) and δ4mrmmn4fmn4 generates NT (12344, 4). �

3.2. A classification result.

Proposition 3.5. Let A and B be C∗-algebras over X1 and assume that the maps
δ4m : FKn

m(A) → FK1−n
4 (A) and δ4m : FKn

m(B) → FK1−n
4 (B) vanish for some m ∈

{1, 2, 3} and some n ∈ {0, 1}. Then any homomorphism ϕ : FK(A) → FK(B) can
be uniquely extended to a homomorphism ϕ′ : FK′(A) → FK′(B). Furthermore, if
ϕ is an isomorphism then so is ϕ′.

Proof. Let ϕ : FK(A)→ FK(B) be a homomorphism. We may extend it by defining
ϕ12344 : FK12344(A)→ FK12344(B) by the following diagrams:

0 // FK1−n
12344(A)

(fij4) //

ϕ1−n
12344

��

FK1−n
124 (A)⊕ FK1−n

134 (A)⊕ FK1−n
234 (A)

(i1234ij4 )
//

ϕ1−n
124 ⊕ϕ1−n

134 ⊕ϕ1−n
234

��

FK1−n
1234(A)

ϕ1−n
1234

��
0 // FK1−n

12344(B)
(fij4) // FK1−n

124 (B)⊕ FK1−n
134 (B)⊕ FK1−n

234 (B)
(i1234ij4 )

// FK1−n
1234(B)

FKn
4 (A)

(ik44 ) //

ϕn4
��

FKn
14(A)⊕ FKn

24(A)⊕ FKn
34(A)

(fk4) //

ϕn14⊕ϕn24⊕ϕn34
��

FKn
12344(A) //

ϕn12344
��

0

FKn
4 (B)

(ik44 ) // FKn
14(B)⊕ FKn

24(B)⊕ FKn
34(B)

(fk4) // FKn
12344(B) // 0

By Lemma 3.4 the four horizontal sequences in the diagrams are exact, hence ϕ12344

is well-defined and is bijective if ϕ is an isomorphism.
By construction ϕn12344 respects the natural transformations fk4 and ϕ1−n

12344 re-
spects the naturals transformations f ij4. Since (f ij4) is injective on FK1−n

12344(B)
and since (fk4) is surjective on FKn

12344(A), it suffices to check that

(f ij4)ϕ1−n
12344fk4 = (f ij4)fk4ϕ

1−n
k4 and ϕnij4f

ij4(fk4) = f ij4ϕn12344(fk4).

And this holds by construction of ϕ12344 as

f ij4fk4ϕk4 = ϕij4f
ij4fk4

since f ij4fk4 ∈ NT (k4, ij4).
Since the natural transformations in FK′ are generated by the natural trans-

formations in FK together with the natural transformations fk4 and f ij4, we see
that the extended ϕ respects all the natural transformations in FK′, hence it is an
NT ′-morphism between FK′(A) and FK′(B). �

Observation 3.6. A tight, purely infinite, nuclear, separable C∗-algebra A over a
finite T0-space X is of real rank zero if and only if the boundary map δUY \U vanishes
on K0(A(Y \U)) for all Y ∈ LC(X) and all U ∈ O(Y ). This follows from the
fact that all Kirchberg algebras have real rank zero combined with the following
result of L. G. Brown and G. K. Pedersen, cf. [BP91, 3.14]: Given an extension
I ↪→ B � B/I of C∗-algebras, B has real rank zero if and only if I and B/I have
real rank zero and projections in B/I lift to projections in B.
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Corollary 3.7. Let A and B be C∗-algebras in the bootstrap class over X1 and
with A of real rank zero. Then any isomorphism between FK(A) and FK(B) lifts
to a KK(X1)-equivalence.

Proof. Since A is of real rank zero, δ42 : FK0
2(A) → FK1

4(A) vanishes by [BP91,
3.14], and since FK(A) and FK(B) are isomorphic, δ42 : FK0

2(B) → FK1
4(B) also

vanishes. By Proposition 3.5 the isomorphism therefore lifts to an isomorphism
between FK′(A) and FK′(B), and by [MN, 5.14] this lifts to a KK(X1)-equivalence.

�

Definition 3.8. Let A and B be unital C∗-algebras over X. Then ϕ : FK(A)→
FK(B) is a homomorphism that preserves the unit if ϕ is a homomorphism of
NT -modules and ϕX([1A]) = [1B ] in FKX(A) = FKX(B). We say that ϕ is an
isomorphism that preserves the unit if ϕ is an isomorphism of NT -modules that
preserves the unit.

Combining this with [Kir00, 4.3] and [RR07, 2.1,3.2], we obtain the following
corollary.

Corollary 3.9. Let A and B be purely infinite, nuclear, separable C∗-algebras that
are tight over X1 and whose simple subquotients lie in the bootstrap class. Assume
that A has real rank zero.

(1) If A and B are stable, then every isomorphism from FK(A) to FK(B) can
be lifted to a ∗-isomorphism from A to B.

(2) If A and B are unital, then every isomorphism from FK(A) to FK(B) that
preserves the unit can be lifted to a ∗-isomorphism from A to B.

Remark 3.10. The space X4 = Xop
1 has been studied in [BK] where it is shown

that the indecomposable transformations for Xop
1 are

234
r //
r

!!CCCCCCC 34
r

!!CCCCCCCC 1
i

!!CCCCCCCC

1234

r
=={{{{{{{ r //

r

!!CCCCCCC 134

r

=={{{{{{{

r

!!CCCCCCC 24
r // 4

δ◦{{{{

=={{{{

δ◦ //

δ◦
CCCC

!!CCCC

2
i // 1234

124
r //

r

=={{{{{{{
14

r

=={{{{{{{{
3

i

=={{{{{{{{
.

It is straightforward to copy the methods of Meyer and Nest in [MN] to construct a
refined filtrated K-theory for which there is a UCT; for Xop

1 the extra representing
object is the mapping cone of a generator of NT (14, 234). The methods we used
for the spaces X1 apply to Xop

1 as well since the boundary maps δ are placed in
similar places in the structure diagrams for NT of Xop

1 .

4. Another counterexample

Consider the space X2 = {1, 2, 3, 4} with O(X2) = {∅, 4, 34, 234, 134, X2}. Then
1 < 3, 2 < 3 and 3 < 4, LC(X2)∗ = {4, 34, 234, 134, 1234, 3, 23, 13, 123, 1, 2}, and
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its Hasse diagram is

1 2

3

\\9999
BB����

4

OO

.

The indecomposable transformations in the category NT have been studied in
detail in [Ben10, 6.1.2] and are the maps in the following diagram:

134
r //
i

!!CCCCCCC 13
i

!!CCCCCCC 1

◦
CCCC
δ

!!CCC

34
r //

i
=={{{{{{{

i

!!CCCCCCC 3

i

=={{{{{{{{

i

!!CCCCCCCC 1234
r // 123 ◦δ //

r

=={{{{{{{{

r

!!CCCCCCCC 4
i // 34

234
r //

i

=={{{{{{{
23

i
=={{{{{{{

2

◦{{{{

δ

=={{{

As with the first counterexample, there exists a refinement FK′ of FK for which
there is a UCT, cf. [Ben10, 6.1], so for A and B in the bootstrap class B(X2) one
can lift an isomorphism between FK′(A) and FK′(B) to a KK(X2)-equivalence.
For X2 one constructs an extra representing object R12334 as the mapping cone

of a generator of the cyclic free group NT (23, 134), and its filtrated K-theory is
then

0
r //
i

!!CCCCCCCC Z
i

!!CCCCCCC Z
δ
◦

CCCC

!!CCC

Z[1]

r
=={{{{{{{

i //

i

!!CCCCCCC 0

i

=={{{{{{{{

i

!!CCCCCCCC Z r // Z2

r
=={{{{{{{

δ◦ //

r

!!CCCCCCC Z[1]
i // Z[1]

0

i

=={{{{{{{{ r // Z

i
=={{{{{{{

Z

δ ◦{{{{

=={{{

where the three maps i12313 , r1231234 and i12323 are given by the three coordinate embed-
dings Z → Z3/(1, 1, 1), the three maps r1123, δ4123 and r2123 are given by the three
projections Z3/(1, 1, 1) → Z2/(1, 1) onto coordinate hyperplanes, and the three
maps δ341 , i344 and δ342 are the identity.
Since pd(FK(R12334)) = 1, we see that for any C∗-algebra A over X2 that lies in

the bootstrap class over X2, A and R12334 will be KK(X2)-equivalent if and only
if the groups FKY (A) and FKY (R12334) are isomorphic for all Y ∈ LC(X2)∗ and
the natural transformation FK13(A)⊕ FK1234(A)→ FK123(A) is an isomorphism,
cf. Lemma 3.1. The indecomposable transformations in the ring NT ′ fit into the
following diagram:

134

!!CCCCCCC 13
i

!!CCCCCCC 1

◦
CCCC
δ

!!CCC

34
r //

i
=={{{{{{{

i

!!CCCCCCC 3 // 12334

=={{{{{{{
//

!!CCCCCCC 1234
r // 123 ◦δ //

r

=={{{{{{{{

r

!!CCCCCCCC 4
i // 34

234

=={{{{{{{
23

i
=={{{{{{{

2

◦{{{{

δ

=={{{

(4.1)
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4.1. The refined invariant.

Lemma 4.1. There exists an exact triangle

R123

ϕ !!CCCCCCC R12334
π◦oo

R13 ⊕R1234 ⊕R23

ι

=={{{{{{{

satisfying that ϕ̄ = (i12313 , r
123
1234, i

123
23 ), that π̄ generates the group NT (123, 12334),

and that ῑ = (f13, f1234, f23) with fY generating NT (12344, Y ).

Proof. Let ϕ : R123 → R13⊕R1234⊕R23 be given by inclusion respectively restric-
tions to subspaces, such that ϕ̄ = (i12313 , r

123
1234, i

123
23 ). The proof is similar to the proof

of Lemma 3.2. Here FK(R123) is used to establish that π̄ is a generator, and FKY

is used for fY . �

Lemma 4.2. There exists an exact triangle

R12334

π !!CCCCCCC R34
ι◦oo

R134 ⊕R3 ⊕R234

ϕ

=={{{{{{{

satisfying that ϕ̄ = (i13434 , r
3
34, i

234
34 ), that ῑ generates NT (12334, 34), and that π̄ =

(f134, f3, f234) with each fY generating the group NT (Y, 12344) respectively.

Proof. Let ϕ : R134 ⊕ R3 ⊕ R234 → M3(R34) be given by inclusions respectively
restriction to a subspace, such that ϕ̄ = (i13434 , r

3
34, i

234
34 ). The proof is similar to the

proof of Lemma 3.3. Here FK4 is used to establish that ῑ is a generator, and FKY

is used for fY . �

Lemma 4.3. There exist natural transformations f134, f3, f234, f13, f1234, f23 such
that 〈fY 〉 = NT (Y, 12334) and

〈
fY
〉

= NT (12334, Y ) and such that the sequences

FK123(A)
f134i

134
4 δ4123◦ // FK12334(A)

(f13,f1234,f23)
zzttttttttt

FK13(A)⊕ FK1234(A)⊕ FK23(A)

(i12313 ,r1231234,i
123
23 )

ddJJJJJJJJJ

and

FK12334(A)
r344 δ4123i

123
23 f23

◦ // FK34(A)

(i13434 ,r334,i
234
34 )

zzttttttttt

FK134(A)⊕ FK3(A)⊕ FK234(A)

(f134,f3,f234)

ddJJJJJJJJJ

are exact for all C∗-algebras A over X2.

Proof. This follows from Lemmas 4.1 and 4.2 by applying KK∗(X2;−, A) and using
that by the Diagram (4.1) the transformation f134i1344 δ4123generatesNT (123, 12334)
and the transformation r344 δ4123i12323 f

23generates NT (12334, 34). �
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4.2. A classification result. A slightly more general result, like the result in
Section 3.2, can be obtained, but we state a weaker result to ease notation.

Proposition 4.4. Let A and B be C∗-algebras over X2 and assume that A and
B have real rank zero. Then any homomorphism ϕ : FK(A) → FK(B) can be
uniquely extended to a homomorphism ϕ′ : FK′(A) → FK′(B). Furthermore, if ϕ
is an isomorphism then so is ϕ′.

Proof. The proof is similar to the proof of Theorem 3.5. Since A and B have real
rank zero, δ4123 : FK0

123(A) → FK1
4(A) and δ4123 : FK0

123(B) → FK1
4(B) vanish, so

by Lemma 4.3 the horizontal sequences in the following diagram are exact

0 // FK1
12334(A) //

ϕ1
12334

��

FK1
13(A)⊕ FK1

1234(A)⊕ FK1
23(A) //

ϕ1
13⊕ϕ1

1234⊕ϕ1
23

��

FK1
123(A)

ϕ1
123

��
0 // FK1

12334(B) // FK1
13(B)⊕ FK1

1234(B)⊕ FK1
23(B) // FK1

123(B)

FK0
4(A) //

ϕ0
4

��

FK0
134(A)⊕ FK0

3(A)⊕ FK0
234(A) //

ϕ0
134⊕ϕ0

3⊕ϕ0
234

��

FK0
12334(A) //

ϕ0
12334

��

0

FK0
4(B) // FK0

134(B)⊕ FK0
3(B)⊕ FK0

234(B) // FK0
12334(B) // 0

so we may recover FK1
12334 as the kernel of (i12313 , r

123
1234, i

123
13 ) and FK0

12334 as the
cokernel of (i13434 , r

3
34, i

234
34 ), as in the proof of Theorem 3.5. �

Corollary 4.5. Let A and B be C∗-algebras in the bootstrap class over X2 and
assume that A has real rank zero. Then any isomorphism between FK(A) and
FK(B) lifts to a KK(X2)-equivalence.

Proof. Since FK(A) and FK(B) are isomorphic, δ4123 : FK0
123(B) → FK1

4(B) van-
ishes, so the proof of Proposition 4.4 applies, hence the isomorphism lifts to an
isomorphism between FK′(A) and FK′(B) and by [Ben10, 6.1.22] this lifts to a
KK(X2)-equivalence. �

Corollary 4.6. Let A and B be purely infinite, nuclear, separable C∗-algebras that
are tight over X2 and whose simple subquotients lie in the bootstrap class. Assume
that A has real rank zero.

(1) If A and B are stable, then every isomorphism from FK(A) to FK(B) can
be lifted to a ∗-isomorphism from A to B.

(2) If A and B are unital, then every isomorphism from FK(A) to FK(B) that
preserves the unit can be lifted to a ∗-isomorphism from A to B.
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Remark 4.7. The space X5 = Xop
2 has been studied in [BK] where it is shown

that the indecomposable transformations for Xop
2 are

23
i //
r

!!CCCCCCCC 234
r

!!CCCCCCC 1
i

!!CCCCCCCC

123

r
=={{{{{{{ i //

r

!!CCCCCCC 1234

r

=={{{{{{{

r

!!CCCCCCC 3
i // 34

δ◦{{{{

=={{{{

r //

δ◦
CCCC

!!CCCC

4
δ◦ // 123

13

r

=={{{{{{{{ i // 134

r
=={{{{{{{

2

i

=={{{{{{{{
.

As with Xop
1 , cf. Remark 3.10, it is straightforward to copy the methods of Meyer

and Nest in [MN] to construct a refined filtrated K-theory for which there is a
UCT; for Xop

2 the extra representing object is the mapping cone of a generator
of NT (134, 23). And as with Xop

1 , the methods we used for the spaces X1 and
X2 apply to Xop

2 since the boundary maps δ are placed in similar places in the
structure diagrams for NT of Xop

2 .

5. A third counterexample

Consider the space X3 = {1, 2, 3, 4} with O(X3) = {∅, 4, 24, 34, 234, X3}. Then
1 < 2, 1 < 3, 2 < 4, 3 < 4, LC(X3)∗ = {4, 24, 34, 234, 1234, 123, 12, 13, 1, 2, 3} and
its Hasse diagram is

1

2

??���
3

__???

4

__???
??���
.

The indecomposable transformations in the category NT have been studied in
detail in [Ben10, 6.2.2] and are displayed in the following diagram:

12 ◦δ //
r

!!CCCCCCCC 34
i

!!CCCCCCC 3
i

!!CCCCCCCC

123 ◦δ //

r
=={{{{{{{

r

!!CCCCCCC 4

i

=={{{{{{{{

i

!!CCCCCCCC 1 ◦δ // 234
i //

r

=={{{{{{{{

r

!!CCCCCCCC 1234
r // 123

13 ◦δ //

r

=={{{{{{{{
24

i
=={{{{{{{

2

i

=={{{{{{{{

The methods used for the spaces X1 and X2 do not apply to X3 since the bound-
ary maps δ are placed radically differently in the structure diagram for NT of X3.
In fact, for this space X3 there does exist tight, nuclear, separable, purely infinite
C∗-algebras A and B over X3 of real rank zero that are not KK(X3)-equivalent but
have isomorphic filtrated K-theory.

Proof of Theorem 1.2. The construction is similar to the one of R. Meyer and
R. Nest in [MN, p. 27ff] and some of the details are carried out in [Ben10, 6.2.4].
Put PY (Z) = NT (Y, Z). Consider the injective map j : P234 → P24⊕P1[1]⊕P34 in-
duced by three generators of the groupsNT (24, 234), NT (1, 234) andNT (34, 234),
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and let M denote the cokernel. Let k ≥ 2 and put Mk = M ⊗ Z/k. Then Mk is

0 ◦ //

%%KKKKKKKKK Z/k

%%KKKKKKKK Z/k

%%KKKKKKKK

Z/k ◦ //

99sssssssss

%%KKKKKKKKK 0

99sssssssss

%%KKKKKKKKK Z/k[1] ◦ // (Z/k)2 //

99ssssssss

%%KKKKKKKK
Z/k // Z/k

0 ◦ //

99sssssssss Z/k

99ssssssss
Z/k

99ssssssss

and has projective dimension 2, and

0 // P234
// P234 ⊕ P24 ⊕ P1[1]⊕ P34

// P24 ⊕ P1[1]⊕ P34
// Mk

// 0

is a projective resolution of Mk. Notice that the boundary maps from even to odd
parts in Mk vanish. There exists in the bootstrap class over X3 a C∗-algebra Ak
with FK(Ak) = Mk, see [Ben10, 6.2.4] for details. Let

Q2
// Q1

// Q0
// Ak

be a ker FK-projective resolution which is a lift of the above projective resolution
of Mk, and let

Ak N0
// N1

◦{{
}}{{

// N2

◦{{
}}{{

// N3

◦{{
}}{{

N3

◦��
����

· · ·

P0

aaCCCC

P1

aaCCCC
oo P2

aaCCCC
oo 0

__@@@@
oo · · ·oo

be its phantom tower. Then N2
∼=KK(X3) Q2 and the composite map Ak → N2 lies

in (ker FK)2. Construct B as the mapping cone of Ak → N2. Then B and Ak⊕SN2

are not KK(X3)-equivalent but have FK(B) ∼= FK(Ak)⊕FK(N2)[1] = Mk⊕P234[1].
See [MN, 4.10, 5.5] for more details.
Since all KK(X3)-equivalence classes in the bootstrap class over X3 can be rep-

resented by tight, stable, purely infinite, nuclear, separable C∗-algebras over X3,
cf. [MN, 4.6], we can find such C and D with C ∼=KK(X3) B, D ∼=KK(X3) Ak ⊕ SN2

and FK(C) ∼= FK(D) ∼= FK(B). Since P234[1] is

Z[1] ◦ //

!!CCCCCCC 0

!!CCCCCCC Z[1]

!!CCCCCC

Z[1]2 ◦ //

=={{{{{{

!!CCCCCC Z

=={{{{{{{{

!!CCCCCCCC 0 ◦ // Z[1] //

=={{{{{{

!!CCCCCC
Z[1] // Z[1]2

Z[1] ◦ //

=={{{{{{{
0

=={{{{{{{
Z[1]

=={{{{{{
,

we see that the boundary maps from even to odd parts in FK(B) vanish, so C and
D will be of real rank zero as their simple subquotients are Kirchberg algebras and
therefore of real rank zero, cf. Observation 3.6. �

Remark 5.1. The real rank zero counter-examples for the space X3 have torsion
in both even and odd degrees. In [ABK], it is shown that for real rank zero C∗-al-
gebras over X3 with free K1-groups, isomorphisms on a reduced filtrated K-theory
lift to KK(X3)-equivalences. This reduced filtrated K-theory is defined in [ABK] by
disregarding parts of the information in filtrated K-theory, and it is equivalent to
the reduced filtered K-theory defined by the second named author in [Res06, 4.1]. It

ARTICLES 63



16 SARA ARKLINT, GUNNAR RESTORFF, AND EFREN RUIZ

is unknown whether isomorphisms on FK lift to KK(X3)-equivalences under these
conditions.

Remark 5.2. The space X6 has been studied in [Ben10] where R. Bentmann fails
to construct a finite refinement of filtrated K-theory over X6 that admits a UCT
and remarks that it seems unlikely that such a finite refinement exists. So our
method cannot be applied for the space X6. In [Ben10], R. Bentmann constructs
tight, stable, purely infinite, nuclear, separable C∗-algebras A and B over X6 that
have isomorphic filtrated K-theory and are not KK(X6)-equivalent. One can check
that the boundary map FK1(A) → FK3(A) does not vanish in either degrees, so
neither A and B nor the suspensions SA and SB have real rank zero. So there is
so far no known real rank zero counter-example for X6.
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REDUCTION OF FILTERED K-THEORY AND
A CHARACTERIZATION OF CUNTZ-KRIEGER ALGEBRAS

SARA ARKLINT, RASMUS BENTMANN, AND TAKESHI KATSURA

Abstract. For real rank zero C∗-algebras over finite T0-spaces in a certain
class we show that (concrete) filtered K-theory can be recovered from a sim-
plified invariant. This class of spaces contains all spaces X for which filtered
K-theory is known to classify Kirchberg X-algebras of real rank zero with
simple subquotients in the bootstrap class.

We define another reduced version of filtered K-theory and determine the
range on the category of graph C∗-algebras over an arbitrary finite T0-space
X. For real rank zero C∗-algebras over a space in our class whose subquotients
have free K1-groups we show that (concrete) filtered K-theory can be recovered
from this reduced invariant.

If X has the property that the reduced invariant classifies Kirchberg X-
algebras of real rank zero with simple subquotients in the bootstrap class,
then we obtain a characterisation of when an extension of stabilized Cuntz-
Krieger algebras is stably isomorphic to a Cuntz-Krieger algebra in terms of a
condition on the corresponding six-term exact sequence in K-theory.

1. Introduction

By a seminal result of Eberhard Kirchberg, KK(X)-equivalences between Kirch-
berg X-algebras, that is, tight, stable, O∞-absorbing, nuclear, separable C∗-al-
gebras over a space X, lift to X-equivariant ∗-isomorphisms. With the aim of
computing the equivariant bivariant theory KK(X), Ralf Meyer and Ryszard Nest
established in [10] a Universal Coefficient Theorem for filtered K-theory over any
finite totally ordered space X. As a result, for such spaces X isomorphisms on
filtered K-theory between Kirchberg X-algebras with simple subquotients in the
bootstrap class lift to X-equivariant ∗-isomorphisms. This result was generalised
in [2] by the second named author to the case of so-called accordion space defined
in Section 2. Building on these results, Søren Eilers, Gunnar Restorff and Efren
Ruiz classified in [9] certain classes of real-rank-zero (not necessarily purely infinite)
graph algebras using ordered filtered K-theory.

On the other hand, Meyer-Nest and the second-named author constructed coun-
terexamples to classification for all six four-point non-accordion spaces. More pre-
cisely, for each such X they find two non-KK(X)-equivalent Kirchberg X-algebras
with simple subquotients in the bootstrap class whose filtered K-theories are iso-
morphic (see [2, 10]).
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Despite this obstruction, it had previously been shown by Gunnar Restorff in [13]
that filtered K-theory FK, and in fact the reduced filtered K-theory FKR, is a
complete invariant for a certain class of unital, purely infinite, nuclear, separable
C∗-algebras with arbitrary finite ideal lattices, namely the Cuntz-Krieger algebras
satisfying property (II). Any finite T0-space can be realized as the primitive ideal
space of a Cuntz-Krieger algebra with property (II). Unfortunately, Restorff’s re-
sult only gives an internal classification of Cuntz-Krieger algebras and admits no
conclusion concerning when a given Cuntz-Krieger algebra is stably isomorphic to a
given purely infinite, nuclear, separable C∗-algebra with the same filtered K-theory.

The Cuntz-Krieger algebras satisfying property (II) have real rank zero. In [1],
Gunnar Restorff, Efren Ruiz and the first-named author noted that for five of the
six problematic four-point spaces the constructed counterexamples to classification
do not have real rank zero. They went on to show that for four of these spaces X
filtered K-theory is in fact a complete invariant for Kirchberg X-algebras of real
rank zero with simple subquotients in the bootstrap class. The four-point non-
accordion space for which the constructed counterexample has real rank zero will
be denoted by D.

For every Cuntz-Krieger algebra satisfying property (II) the K1-group of every
subquotient is free. The same is true, more generally, for graph algebras with
real rank zero. We observe that, for real-rank-zero C∗-algebras over D satisfying
this condition on their K-theory, isomorphisms on the reduced filtered K-theory
FKR lift to KK(D)-equivalences (see Remark 8.15). There are therefore no known
counterexamples to classification by filtered K-theory of Kirchberg X-algebras with
simple subquotients in the bootstrap class that have the K-theory of a real-rank-
zero graph algebra.

1.1. Organization of the paper. The main focus of this paper is not complete-
ness of filtered K-theory, but reduction of filtered K-theory, and the range of filtered
K-theory for graph algebras. The main results are recaptured in Theorem 10.1.

In Section 6, filtered K-theory restricted to a canonical base FKB is defined for
spaces with a specified boundary decomposition property, and it is shown that the
concrete filtered K-theory FKST (A) of a real rank zero C∗-algebra A is completely
determined by the filtered K-theory restricted to a canonical base FKB(A).

In Section 7, reduced filtered K-theory FKR is defined, and it is shown for spaces
with the so-called boundary decomposition property that the concrete filtered K-
theory FKST (A) of a real rank zero C∗-algebra A satisfying that all subquotients
have free K1-groups can be recovered from the reduced filtered K-theory FKR(A).
This is of particular interest since in Section 9 we determine the range of reduced
filtered K-theory FKR for graph algebras.

In Section 9, we combine the range result of FKR with completeness of FKR
for some spaces with the boundary decomposition property to determine exactly
when an extension of stabilized Cuntz-Krieger algebras is a stabilized Cuntz-Krieger
algebra.

2. Notation

We follow the notation and definition for graph algebras of Iain Raeburn, cf. [12].
All graphs are assumed to be countable and to satisfy Condition (K), hence all
considered graph algebras are separable and of real rank zero. In this article,
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REDUCTION OF FILTERED K-THEORY 3

matrices act from the right and the composite of maps A f→ B
g→ C is denoted

by fg.
Let X be a finite T0-space. For a subset Y of X, we let Y denote the closure

of Y , and let ∂Y denote the (closed) boundary Y \ Y of Y . Since X is a finite
space, there exists a smallest open set Ỹ containing Y .We let ∂̃(Y ) denote the open
boundary Ỹ \ Y of Y .

For x, y ∈ X we write x ≤ y when {x} ⊆ {y}, and x < y when x ≤ y and x 6= y.
For each x ∈ X, we denote by Pr(x) the set of all y ∈ X such that x < y and that
no z ∈ X satisfies x < z < y. We write y → x when y ∈ Pr(x). The following
lemma is straightforward

Lemma 2.1. For x ∈ X, the following hold:
(1) The set Pr(x) coincides with the set of all closed points of ∂̃({x}).
(2) We have ∂̃({x}) =

⋃
y∈Pr(x) {̃y}, and consequently ∂̃({x}) is open.

(3) An element y ∈ X satisfies x < y if and only if there exists a finite sequence
(zk)nk=1 in X such that zk+1 ∈ Pr(zk) for k = 1, . . . , n − 1 where z1 = x,
zn = y.

We call a sequence (zk)nk=1 as in Lemma 2.1(3) a path from y to x. We denote
by Path(y, x) the set of paths from y to x. Thus Lemma 2.1(3) can be rephrased
that x, y ∈ X satisfies x < y if and only if there exists a path from y to x. Such a
path is unique if X is an accordion space, but in general not unique. Two x, y ∈ X
satisfies y ∈ Pr(x) if and only if (x, y) is a path from y to x, and in this case, there
are no other paths.

The space X is called an accordion space if for each x ∈ X there are at most two
elements z ∈ X satisfying x → z or z → x, and if there are exactly two elements
x ∈ X for which there is exactly one element z ∈ X satisfying x → z or z → x. If
X is linear, that is, if X = {x1, . . . , xn} with xn → · · · → x2 → x1, then X is an
accordion space.

3. Filtered K-theory

A C∗-algebra A over X is a C∗-algebra A equipped with a infima- and suprema-
preserving map O(X) → I(A), U → A(U) mapping open subsets in X to ideals
in A. A ∗-homomorphism ϕ : A → B for C∗-algebras A and B over X is called
X-equivariant if ϕ(A(U)) ⊆ B(U) for all U ∈ O(X). Let LC(X) denote the set
of locally closed subsets of X, i.e., subsets of the form U \ V with U and V open
subsets of X satisfying V ⊆ U . For Y ∈ LC(X), and U, V ∈ O(X) satisfying that
Y = U \V and U ⊇ V , we define A(Y ) as A(Y ) = A(U)/A(V ), which up to natural
isomorphism is independent of the choice of U and V (see [11, Lemma 2.15]).

For a C∗-algebra A over X, FKY (A) is defined as K∗(A(Y )) for all Y ∈ LC(X).
We write FKi

Y (A) for Ki(A(Y )). Ralf Meyer and Ryszard Nest constructed in [10]
C∗-algebras RY over X satisfying that the functors FKY and KK∗(X;RY ,−) are
equivalent.

In their definition of filtered K-theory FK, Meyer-Nest consider the Z/2-graded
category NT ∗ with objects LC(X) and morphisms

Nat(FKY ,FKZ) ∼= KK∗(X;RZ , RY )

between Y and Z, where Nat(FKY ,FKZ) denotes the set of natural transformations
from the functor FKY to the functor FKZ . The target category of FK is the category
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of graded modules over NT ∗, i.e., Z/2-graded additive functors NT ∗ → AbZ/2,
hence FK(A) consists of the groups FKY (A) together with the natural transfor-
mations FKY (A) → FKZ(A). To ease notation in the definitions to follow, we
instead consider the category NT with objects LC(X) × {0, 1} and morphisms
Nat(FKj

Y ,FKk
Z) ∼= KK0(X; Sk RZ ,S

j RY ) between (Y, j) and (Z, k). The category
of modules over NT , i.e., additive functors NT → Ab, is equivalent to the target
category of FK. Hence, in our notation,

FK: KK(X)→Mod(NT ).

Definition 3.1. Let Y ∈ LC(X), U ⊆ Y open and set C = Y \ U . Such a pair
(U,C) is called a boundary pair. The natural transformations occuring in the six-
term exact sequence in K-theory for the distinguished ideal associated to U ⊆ Y
are denoted by iYU , r

C
Y and δYC :

FKU

iZU // FKY

rCY{{www
ww

ww
ww

FKC

◦GGGGδUC

ccGGGG

They correspond to the KK(X)-classes of RY � RU , RC ↪→ RY , and RC ↪→ RY �
RU , respectively.

The following relations among the natural transformations acting on FK were
established in [2].

Proposition 3.2. In the category NT , the following relations hold. By U , V , Y ,
C and D we denote generic elements of LC(X).

(1) For every Y ∈ LC(X),

iYY = rYY = idY .

(2) If Y t Z is a topologically disjoint union of subsets Y,Z ∈ LC(X), then

rYY ∪Zi
Y ∪Z
Y + rZY ∪Zi

Y ∪Z
Z = idY ∪Z .

In particular, the empty set ∅ is a zero object.
(3) For open subsets U ⊆ V ⊆ Y ,

iVU i
Y
V = iYU .

(4) For closed subsets C ⊆ D ⊆ Y ,

rDY r
C
D = rCY .

(5) Whenever U ⊆ Y is open and C ⊆ Y is closed,

iYU r
C
Y = rU∩CU iCU∩C .

(6) Let (U,C) be a boundary pair in NT and define Y = U ∪ C.
(i) Let C ′ ⊆ C be a relatively open subset. Then U ∪C ′ is relatively open

in U ∪ C, the set C ′ is relatively closed in U ∪ C ′, and we have

iCC′δ
U
C = δUC′ .

(ii) Let U ′ ⊆ U be a relatively closed subset. Then U ′ ∪ C is relatively
closed in U ∪ C, the set U ′ is relatively open in U ′ ∪ C, and

δUCr
U ′
U = δU

′
C .
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REDUCTION OF FILTERED K-THEORY 5

(iii) Let U ′ be a subset of U with the property that U ′ ∪C is relatively open
in U ∪C. Then U ′ is relatively open in U and in U ′ ∪C, and we have

δU
′

C iUU ′ = δUC .

(iv) Let C ′ be a subset of C with the property that U∪C ′ is relatively closed
in U ∪ C. Then C ′ is relatively closed in C and in U ∪ C ′, and

rC
′

C δUC′ = δUC .

(7) Let (U,C) and (U ′, C ′) be boundary pairs in NT with U ∪C = U ′∪C ′, and
such that U is an open subset of U ′ and C ′ is a closed subset of C. Then

δUC i
U ′
U = rC

′
C δU

′
C′ .

Remark 3.3. The vanishing of consecutive maps in six-term sequences associated
to distinguished subquotient inclusions follows from the above relations.

Definition 3.4. Let ST be the universal preadditive category with generators as
in Definition 3.1 and relations as in Proposition 3.2.

There is a canonical additive functor ST → NT which is an isomorphism in
all examples which have been investigated so far, including accordion spaces (see
[2, 10]). We believe that this is also true for the more general UPP spaces defined
in the following but do not give a proof here.

Let FST : Mod(NT )→Mod(ST ) be the induced functor.

Definition 3.5. We define concrete filtered K-theory FKST : KK(X)→Mod(ST )
as the composition FST ◦ FK.

Definition 3.6. An NT -module M is called exact if for all Y ∈ LC(X) and
U ∈ O(Y ), the sequence

M(U, 0)
i // M(Y, 0)

r // M(Y \ U, 0)

δ

��
M(Y \ U, 1)

δ

OO

M(Y, 1)
r

oo M(U, 1)
i

oo

is exact. An NT -module M is called real-rank-zero-like if for all Y ∈ LC(X) and
U ∈ O(Y ), the map δ : M(Y \ U, 0)→M(U, 1) vanishes.

In the same way, we define exact ST -modules and real-rank-zero-like ST -mod-
ules.

Clearly, for a (real rank zero) C∗-algebra A over X, the modules FK(A) and
FKST (A) are exact (and real-rank-zero-like).

4. Sheafs

In this section we introduce sheaves and cosheaves and recall that it suffices to
specify them on a basis for the topology.

Let X be an arbitrary topological space with topology O. Let B be a basis for
the topology on X. The sets B and O are partially ordered by inclusion.

Definition 4.1. A presheaf on O is a contravariant functor M : O → Ab. It is
a sheaf on O if, for every open set U and every open covering (Uj)j∈J of U , the
sequence
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0 −→ M(U)

(
M(i

Uj
U )
)

−→
∏

j∈J
M(Uj)

(
M(i

Uj∩Uk
Uj

)−M(i
Uj∩Uk
Uk

)
)

−→
∏

j,k∈J
M(Uj ∩ Uk)

is exact.
More generally, a presheaf on B is a contravariant functor M : B → Ab. It is

a sheaf on B if, for every open set U ∈ B, every open covering (Uj)j∈J of U with
Ui ∈ B and every open coverings (Ujkl)l∈Ljk of Uj ∩Uk with Ujkl ∈ B, the sequence

(4.2) 0 −→ M(U)

(
M(i

Uj
U )
)

−→
∏

j∈J
M(Uj)

(
M(i

Ujkl
Uj

)−M(i
Ujkl
Uk

)
)

−→
∏

j,k∈J

∏

l∈Ljk
M(Ujkl)

is exact. There is an obvious notion of morphism for sheafs. We denote by Sh(B)
the category of sheafs on B.

Lemma 4.3. The restriction functor Sh(O) → Sh(B) is an equivalence of cate-
gories.

Proof. This is a well-known fact in algebraic geometry (see, for instance the ency-
clopedic treatment in [14, Lemma 009O]). We confine ourselves on mentioning that
(4.2) provides a formula for computing M(U) for an arbitrary open subset U . �

Definition 4.4. A precosheaf on O is a covariant functor M : O → Ab. It is a
cosheaf on O if, for every open set U and every open covering (Uj)j∈J of U , the
sequence

(4.5)
⊕

j,k∈J
M(Uj∩Uk)

(
M(i

Uj
Uj∩Uk

)−M(i
Uk
Uj∩Uk

)
)

−→
⊕

j∈J
M(Uj)

(
M(iUUj

)
)

−→ M(U) −→ 0.

is exact.
More generally, a precosheaf on B is a covariant functor M : B → Ab. It is a

cosheaf on B if, for every open set U ∈ B, every open covering (Uj)j∈J of U with
Ui ∈ B and every open coverings (Ujkl)l∈Ljk of Uj ∩Uk with Ujkl ∈ B, the sequence

(4.6)
⊕

j,k∈J

⊕

l∈Ljk
M(Ujkl)

(
M(i

Uj
Ujkl

)−M(i
Uk
Ujkl

)
)

−→
⊕

j∈J
M(Uj)

(
M(iUUj

)
)

−→ M(U) −→ 0.

is exact. There is an obvious notion of morphism for cosheafs. We denote by
CoSh(B) the category of cosheafs on B.

Lemma 4.7. The restriction functor CoSh(O) → CoSh(B) is an equivalence of
categories.

Proof. This statement in the dual of Lemma 4.3 and follows in an analogous way.
Again, (4.6) can be used to compute M(U) for an arbitrary open subset U . �

With regard to the next section we remark that every finite T0-space (more
generally every Alexandrov space) comes with canonical bases for the open subsets,
namely

{
{̃x} | x ∈ X

}
, and for the closed subsets:

{
{x} | x ∈ X

}
.

Lemma 4.8. Let X be a finite T0-space and let S be a pre(co)sheaf on the basis
B =

{
{̃x} | x ∈ X

}
. Then S is a (co)sheaf.
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Proof. This follows from the observation that, in the basis B there are no non-trivial
coverings, that is, if U is a covering of U then U ∈ U . �

5. On the ordering of K0(A)

The notion of ordered filtered K-theory has been introduced by Eilers-Restorff-
Ruiz in [9] to classify real rank zero graph algebras. In this section, we recall their
definition and state some useful facts.

For a C∗-algebra A, an element [p]0 in K0(A) where p is a projection in Mn(A)
for some n is called positive. The positive cone K0(A)+ consists of all positive
elements in K0(A).

For two C∗-algebras A and B, a group homomorphism ϕ : K0(A) → K0(B) is
called positive if ϕ(K0(A)+) ⊆ K0(B)+, and a group isomorphism ϕ : K0(A) →
K0(B) is called an order-isomorphism if ϕ(K0(A)+) = K0(B)+.

For C∗-algebras A and B over the space X, a ST -momorphism ϕ : FKST (A)→
FKST (B) is called positive if the induced maps FK0

Y (A)→ FK0
Y (B) are positive for

all Y ∈ LC(X), and an isomorphism is called an order-isomorphism if the induced
isomomorphisms are order-isomorphisms. For reductions of filtered K-theory, the
same definition applies.

In [6, 3.14], Lawrence G. Brown and Gert K. Pedersen showed that given an
extension I ↪→ A� A/I of C∗-algebras, the C∗-algebra A has real rank zero if and
only if I and A/I have real rank zero and projections in A/I lift to projections in
A/I. As real rank zero passes to matrices, we see that for a real rank zero C∗-alge-
bra A and an ideal I in A, the induced map K0(A)→ K0(A/I) surjects the positive
cone K0(A)+ onto the positive cone K0(A/I)+.

We are indebted to Mikael Rørdam for the elegant proof of the following lemma.
As a consequence of the lemma, if a real rank zero C∗-algebra A can be written
A = I1 + I2 + · · ·+ In with I1, . . . , In ideals in A, then the induced map K0(I1)⊕
· · · ⊕K0(In)→ K0(A) surjects the direct sum of the positive cones K0(I1)+⊕ · · ·⊕
K0(In)+ onto the positive cone K0(A)+.

Lemma 5.1. Let A be a real rank zero C∗-algebra and let I and J be (closed,
two-sided) ideals in A satisfying I + J = A. Then any projection p in A can be
written p = q + q′ with q a projection in I and q′ a projection in J .

Proof. Let p a projection in A be given and write p = a+ b with a ∈ I and b ∈ J .
We may assume that a = pap and b = pbp. As A has real rank zero, the hereditary
subalgebra pIp has an approximate unit of projections, so there exists a projection
q in pIp satisfying ‖a − aq‖ < 1

2 . Since q = pqp, q ≤ p and we may define a
projection q′ as q′ = p − q. Now, q′ = q′pq′ = q′aq′ + q′bq′ with q′bq′ ∈ J , so
dist(q, J) ≤ ‖q′aq′‖ < 1, hence q′ + J is a projection in A/J of norm strictly less
than 1, ergo q′ + J = J . �

6. Filtered K-theory restricted to canonical base

In this section, the functor FKB and the notions of UPP spaces and BDP spaces
are introduced.

The following lemma is straightforward to verify.

Lemma 6.1. For a finite T0-space X the following conditions are equivalent.
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• There are no elements a, b, c, d in X with a < b < d, a < c < d and neither
b ≤ c nor c ≤ b.

• In the Hasse diagram associated to the specialisation order on X, any two
elements are connected by at most one path of directed edges.

• For all x, y ∈ X with x→ y, {̃x} ∪ {y} ∈ LC(X).
• For all x ∈ X, ∂̃({x}) =

∐
y→x {̃y}.

• For all x ∈ X, ∂({x}) =
∐
x→y {y}.

Definition 6.2. A finite T0-space X is called UPP (unique path property) if it
satisfies the equivalent conditions specified in Lemma 6.1.

Let X be a UPP space.

Definition 6.3. Let B denote the universal preadditive category generated by
objects x1, x̃0 for all x ∈ X and morphisms ry1x1

, δx̃0

y1
and iỹ0x̃0

when x → y, subject
to the relations

(6.4)
∑

x→y
r
y1
x1
δx̃0

y1
=
∑

z→x
δz̃0x1

ix̃0

z̃0

for all x ∈ X.

Lemma 6.5. In the category ST , we have the relation
∑

x→y
r
{y}
{x}δ

{̃x}
{y} =

∑

z→x
δ
{̃z}
{x}i

{̃x}
{̃z}

for all x ∈ X.

Proof. Since X is a UPP space, the collections
(
{y}
)
x→y

and
(
{̃z}
)
z→x

are dis-

joint, respectively. Hence the desired relation simplifies to

r
∂{x}
{x} δ

{̃x}
∂{x} = δ

∂̃{x}
{x} i

{̃x}
∂̃{x},

which follows from Proposition 3.2(7). �

The previous lemma allows us to define an additive functor B → ST by x1 7→
({x}, 1) and x̃0 7→ ({̃x}, 0), and in the obvious way on morphisms. Let

FB : Mod(ST )→Mod(B)

denote the induced functor. Define filtered K-theory restricted to the canonical base,
FKB, as the composition of FKST with FB.

Definition 6.6. A B-module M is called exact if the sequence

(6.7) M(x1)

(
r
y1
x1
−δz̃0x1

)

−→
⊕

x→y
M(y1)⊕

⊕

z→x
M(z̃0)


δ

x̃0

y1

ix̃0

z̃0




−→ M(x̃0)

is exact for all x ∈ X.

Lemma 6.8. If M is an exact ST -module, then FB(M) is an exact B-module.
In particular, if A is a C∗-algebra over X, then the B-module FKB(A) is exact.
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Proof. Using again that the collections
(
{y}
)
x→y

and
(
{̃z}
)
z→x

are respectively

disjoint, it suffices to prove exactness of the sequence

M({x}, 1)

(
r
∂{x}
{x} −δ∂̃{x}{x}

)

−→ M(∂{x}, 1)⊕M(∂̃{x}, 0)



δ
{̃x}
∂{x}

i
{̃x}
∂̃{x}




−→ M({̃x}, 0),

which follows from a diagram chase through the commutative diagram

M({x}, 1) // M({x}, 1) //

◦
��

M(∂{x}, 1) ◦ //

◦
��

M({x}, 0)

M({x}, 1) ◦ // M(∂̃{x}, 0) // M({̃x}, 0) // M({x}, 0)

whose rows are exact. �

Definition 6.9. A UPP space X is called BDP if it satisfies the following boundary
decomposition property : for all boundary pairs (U,C) in X,

δUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

holds in the category ST .
Theorem 6.10. Let X be a BDP space. The functor

FB : Mod(ST )→Mod(B)

restricts to an equivalence between the category of exact real-rank-zero-like ST -
modules and the category of exact B-modules.

For C∗-algebras A and B over X with real rank zero, an ST -module homomor-
phism Φ: FKST (A) → FKST (B) is an order-isomorphism if and only if FB(Φ)
is.

A proof of this theorem is given after the following remark.

Remark 6.11. The invariant FKB is only defined for UPP spaces as the boundary
map δ{̃x}{y} only exists when {y}∪ {̃x} belongs to LC(X). Also, the invariant FKB is
most likely only sufficient for BDP spaces as for non-BDP spaces not all boundary
maps can be recovered from FKB.

Proof of Theorem 6.10. We will explicitly define a functor from the category of
exact B-modules to the category of exact real-rank-zero-like ST -modules.

Let an exact B-module N be given. We will define an ST -module M . We begin
in the obvious way: For x ∈ X, let M({x}, 1) = N(x1) and M({̃x}, 0) = N(x̃0).

Similarly, for x → y, we define the even component of i{̃y}
{̃x}

to be iỹ0x̃0
, the odd

component of r{y}{x} to be ry1x1
, and the odd-to-even component of δ{̃x}{y} to be δx̃0

y1
.

This makes sure that, finally, we will have FB(M) = N . Also, we of course define
δUC : M(C, 0) → M(U, 1) to be zero for every boundary pair (U,C) so that M will
be real-rank-zero-like.
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For x ≥ y, let x → x1 → x2 → · · · → xn → y be the unique path from x to y.
Define the even component of i{̃y}

{̃x}
to be the composition ix̃10

x̃0
ix̃20

x̃10
· · · iỹ0x̃n0

and the

odd component of r{y}{x} as the composition rx11

x1
rx21

x11
· · · ry1xn1

. In case of x = y, this

specifies to ix̃0

x̃0
= id

M({̃x},0)
and rx1

x1
= id

M({x},1)
. If we have x → y, then these

definitions coincide with the ones we gave before.
We observe that the groups M({̃x}, 0) with the maps i{̃y}

{̃x}
define a precosheaf on

B =
{
{̃x} | x ∈ X

}
. By Lemma 4.8 it is in fact a cosheaf. We can therefore apply

Lemma 4.7 and obtain groups M(U, 0) for all sets U and maps iVU : M(U, 0) →
M(V, 0) for open sets U ⊆ V which fulfill the relations (1) and (3) in Proposition
3.2.

For an arbitrary locally closed subset Y ∈ LC(X) we write Y = V \U with open
sets U ⊆ V and define M(Y, 0) as the cokernel of the map iVU : M(U, 0)→M(V, 0).
That this definition does not depend on the choice of U and V can be seen in a
way similar to the proof of [11, Lemma 2.15] using that pushouts of abelian groups
preserve cokernels. We obtain maps rYV : M(V, 0) → M(Y, 0) for every open set V
with relatively closed subset Y ⊆ V such that the following holds: If Y ∈ LC(X)
can be written as differences Vi \ Ui of open sets for i ∈ {1, 2} such that U1 ⊆ U2

and V1 ⊆ V2, then the diagram

M(U1, 0)
i //

i

��

M(V1, 0)
r // //

i

��

M(Y, 0)

M(U2, 0)
i // M(V2, 0)

r // // M(Y, 0)

(6.12)

commutes.
For a relatively open subset U ⊆ Y ∈ LC(X) we obtain a map iYU : M(U, 0) →

M(Y, 0) using the diagram

M(∂̃U, 0)
i //

i

��

M(Ũ , 0)
r // //

i

��

M(U, 0)

i

��
M(∂̃Y, 0)

i // M(Ỹ , 0)
r // // M(Y, 0).

(6.13)

It is easy to check that this map coincides with the previously defined one in case
Y is open.

We find that, for Yi ∈ LC(X) with Y1 ⊆ Y2 open, and Yi = Vi \ Ui for i ∈ {1, 2}
and open sets Ui, Vi such that U1 ⊆ U2 and V1 ⊆ V2, the diagram

M(U1, 0)
i //

i

��

M(V1, 0)
r // //

i

��

M(Y1, 0)

i

��
M(U2, 0)

i // M(V2, 0)
r // // M(Y2, 0)

(6.14)

commutes. We know this already for the left-hand square. For the right-hand
square, it can be seen as follows: since V1 is covered by U1 and Ỹ1, it suffices to
check commutativity on the images iV1

U1
(M(U1)) and iV1

Ỹ1
(M(Ỹ1)). On iV1

U1
(M(U1))
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both compositions vanish. On the image of M(Ỹ1), commutativity follows from
(6.12) and (6.13) considering the diagram

M(Ỹ1, 0)
i
//

i

��

r

**
M(V1, 0)

r
// //

i

��

M(Y1, 0)

i

��
M(Ỹ2, 0)

i //

r

33
M(V2, 0)

r // // M(Y2, 0).

Now let Y ∈ LC(X), let U be a relatively open subset of Y and let C = Y \ U .
Consider the diagram

M(∂̃U, 0)
i //

i

��

M(Ũ , 0)
r // //

i

��

M(U, 0)

i

��
M(∂̃Y, 0)

i //

r
����

M(Ỹ , 0)
r // //

r
����

M(Y, 0)

����
M(∂̃Y \ ∂̃U, 0)

i // M(Ỹ \ Ũ , 0)
r // // M(C, 0),

(6.15)

whose solid squares commute and whose rows and solid columns are exact. A
diagram chase shows that there is a unique surjective map rCY : M(Y, 0)→M(C, 0),
as indicated by the dotted arrow, making the bottom-right square commute and
making the right-hand column exact at M(Y, 0). Again, we can easily check that
this map coincides with the previously defined one in case Y is open.

We have now defined the even part of the module M completely. It is straight-
forward to check the relations (3) and (4) in Proposition 3.2. We will now prove
that the relation (5) holds as well.

For this purpose, fix Y ∈ LC(X), let U ⊆ Y be open and let C ⊆ Y be closed.
Consider the diagram

M(Ũ , 0)
r // //

i

��

M(U, 0)
r //

i

��

M(U ∩ C, 0)

i

��
M(Ỹ , 0)

r // M(Y, 0)
r // M(C, 0)

We would like to proof that the right hand square commutes. The left hand square
commutes by definition of the map iYU . Since Ũ ∩ C = U ∩ C, we can therefore
assume without loss of generality that U and Y are open. Commutativity then
follows from (6.14).

Next, we will convince ourselves that the relation (2) in Proposition 3.2 holds
on the even part of M . Let W = Y tZ be a topologically disjoint union of subsets
Y,Z ∈ LC(X). Fix w ∈ W . Then (w − wrZW iWZ )rZW = 0 as iWZ r

Z
W = idZ . Hence

there is y ∈ Y with yiWY = w−wrZW iWZ . Applying rYW shows y = wrYW as iWZ r
Y
W = 0.

We get
w(rYW i

W
Y + rZW i

W
Z ) = yiWY + wrZW i

W
Z = w.

We have shown that rYW i
W
Y + rZW i

W
Z = idW as desired.
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We have defined all even groups for the desired module M and the action of all
transformations between them. We have checked all relations only involving trans-
formations between even groups and verified exactness of M(C, 0) → M(Y, 0) →
M(U, 0) for every boundary pair Y = U ∪ C.

We intend to do the same for the odd part of the moduleM in an analogous way.
We start out with the given data consisting of the groups M({x}, 1) and the maps
r
y1
x1
, x → y, extend this to a sheaf on the basis

{
{x} | x ∈ X

}
of closed sets and

apply Lemma 4.3. Observing that every locally closed subset of X can be written
as a difference of two nested closed sets and using the functoriality of the kernel of
a group homomorphism, we define groups M(Y , 1) for all Y ∈ LC(X) and actions
for all transformations between these odd groups. Using arguments analogous to
the ones above, we can verify the relations (1) to (5) in Proposition 3.2 on the odd
part of M . It remains to define the odd-to-even components of the boundary maps
δUC for all boundary pairs (U,C), which has only be done in the special case U = x̃,
C = y with x→ y. Our general definition for δUC : M(C, 1)→M(U, 0) is

(6.16) δUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

Our next aim is to verify the relations in (6) and (7) Proposition 3.2. We begin
with relation (6)(i). Let (U,C) be a boundary pair and let C ′ ⊆ C be relatively
open. We have by the relations (3) and (5) that

iCC′ δ
U
C =

∑

x→y,x∈U,y∈C
iCC′ r

{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

=
∑

x→y,x∈U,y∈C
r
{y}∩C′
C′ i

{y}
{y}∩C′ δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

Since C ′ is relatively open in C, {y} ∩ C ′ is empty unless y ∈ C ′. Therefore, the
above sum equals

δUC′ =
∑

x→y,x∈U,y∈C′
r
{y}∩C′
C′ i

{y}
{y}∩C′ δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

This shows relation (6)(i). The relation (6)(ii) follows similarly.
Next we will check relation (6)(iii). Let (U,C) be a boundary pair and let U ′ be

a subset of U such that U ′ ∪ C is relatively open in U ∪ C. This relative openness
condition ensures that x→ y, x ∈ U , y ∈ C implies x ∈ U ′. Moreover, for x ∈ U ′,
we have x̃ ∩ U ′ = x̃ ∩ U . Hence we get

δUC =
∑

x→y,x∈U ′,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

=
∑

x→y,x∈U ′,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′ i
U
U ′ = δU

′
C iUU ′ .

Again, relation (6)(iv) follows in a similar way.
Now we turn to relation (7). Let (U,C) be a boundary pair and let p ∈ C be a

maximal point. Then U ′ = U ∪ {p} and C ′ = C \ {p} form a boundary pair with
U ∪C = U ′∪C ′, U ⊆ U ′ relatively open and C ′ ⊆ C relatively closed. It suffices to
verify relation (7) in the particular situation above, because every boundary pair
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(U ′, C ′) with U ∪C = U ′∪C ′, U ⊆ U ′ relatively open and C ′ ⊆ C relatively closed
can be obtained from (U,C) by performing the above procedure finitely many times.

Since N is a B-module, we have
∑

p→y
r
{y}
{p} δ

{̃p}
{y} =

∑

x→p
δ
{̃x}
{p} i

{̃p}
{̃x}

.

Multiplying from the right with r{̃x}∩U
′

{̃p}
iU
′

{̃x}∩U ′ we get by the relations (5) and (1)
that

∑

p→y
r
{y}
{p} δ

{̃p}
{y} r

{̃x}∩U ′

{̃p}
iU
′

{̃x}∩U ′ =
∑

x→p
δ
{̃x}
{p} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

=
∑

x→p,x∈U
δ
{̃x}
{p} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′ .

In the last step we have used that x̃ ∩ U ′ is empty for x → p with x 6∈ U because
U ′ is locally closed. Multiplying from the left with r{p}∩CC i

{p}
{p}∩C , we then obtain

∑

x→p,x∈U
r
{p}∩C
C i

{p}
{p}∩C δ

{̃x}
{p} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

=
∑

p→y
r
{p}∩C
C i

{p}
{p}∩C r

{y}
{p} δ

{̃p}
{y} r

{̃x}∩U ′

{̃p}
iU
′

{̃x}∩U ′

=
∑

p→y
r
{y}∩{p}∩C
C i

{y}
{y}∩{p}∩C δ

{̃p}
{y} r

{̃x}∩U ′

{̃p}
iU
′

{̃x}∩U ′

=
∑

p→y,y∈C′
r
{y}∩C
C i

{y}
{y}∩C δ

{̃p}
{y} r

{̃x}∩U ′

{̃p}
iU
′

{̃x}∩U ′ .

It follows that

δUC iU
′

U =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

=
∑

x→p,x∈U
r
{p}∩C
C i

{p}
{p}∩C δ

{̃x}
{p} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

+
∑

x→y,x∈U,y∈C′
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

=
∑

p→y,y∈C′
r
{y}∩C
C i

{y}
{y}∩C δ

{̃p}
{y} r

{̃x}∩U ′

{̃p}
iU
′

{̃x}∩U ′

+
∑

x→y,x∈U,y∈C′
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′

=
∑

x→y,x∈U ′,y∈C′
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU
′

{̃x}∩U ′ = rC
′

C δU
′

C′ .

This finishes the verification of the relations in Proposition 3.2. Hence, M is indeed
an ST -module. To see that M is exact, it remains to show that the sequences

M(C, 1)
δUC−−→M(U, 0)

iYU−→M(Y, 0) and M(Y, 1)
rCY−−→M(C, 1)

δUC−−→M(U, 0) are exact
for all boundary pairs (U,C) with Y = U ∪ C.
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Fix an element x ∈ X and consider the commutative diagram

M({x}, 1)
i // M({x}, 1)

r //

◦
��

M(∂{x}, 1)

◦
��

M({x}, 1) ◦ // M(∂̃{x}, 0)
i // M({̃x}, 0)

Using exactness of the upper row and the fact that N was an exact B-module, a
diagram chase shows that the bottom row is exact. In a similar way, we see that
the sequence

M({x}, 1)→M(∂{x}, 0)→M({x}, 0).

is exact for every x ∈ X.
Next, let Y ∈ LC(X) and let x ∈ Y be a closed point. Then Y ∩{̃x} is relatively

closed in {̃x} because Y is locally closed. A diagram chase in the commutative
diagram

M(∂̃(x) \ (Y ∩ ∂̃(x)), 0)

i

��

M({̃x} \ (Y ∩ {̃x}), 0)

i

��
M({x}, 1) ◦ // M(∂̃{x}, 0)

r
����

i // M({̃x}, 0)

r
����

M({x}, 1) ◦ // M(Y ∩ ∂̃{x}, 0)
i // M(Y ∩ {̃x}, 0),

whose columns and first row are exact, yields exactness of the bottom row. By a
diagram chase in the commutative diagram

M({x}, 1) ◦ // M(Y ∩ ∂̃{x}, 0)
i //

i

��

M(Y ∩ {̃x}, 0)

i

��
M({x}, 1) ◦ // M(Y \ {x}, 0)

i // M(Y, 0)

using the exact cosheaf sequence (4.5) for the covering (Y \ {x}, Y ∩ {̃x}) of Y we
obtain exactness of the bottom row. Notice that, using a further diagram chase,
it is not hard to deduce the exactness of the cosheaf sequence for a relatively open
covering of a locally closed set from the open case.

We have established the exactness of the sequence M(C, 1)
δUC−−→ M(U, 0)

iYU−→
M(Y, 0) for all boundary pairs (U,C) with C a singleton. Analogously, we find

that M(Y, 1)
rCY−−→M(C, 1)

δUC−−→M(U, 0) is exact whenever U is a singleton.
We will proceed by an inductive argument. Let n ≥ 1 be a natural number and

assume that exactness of the sequence M(C, 1)
δUC−−→M(U, 0)

iYU−→M(Y, 0) is proven
for all boundary pair (U,C) for which C has at most n elements. Let (U,C) be a
boundary pair such that C has n+ 1 elements. Write Y = U ∪ C. Let p ∈ C be a
maximal point and set U ′ = U ∪ {p}, C ′ = C \ {p}. Then (U ′, C ′) is a boundary
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pair. A diagram chase in the commutative diagram

M({p}, 1)
i // M(C, 1)

◦
��

r // M(C ′, 1)

◦
��

◦ // M({p}, 0)

M({p}, 1) ◦ // M(U, 0)

i

��

i // M(U ′, 0)

i

��

r // M({p}, 0)

M(Y, 0) M(Y, 0),

whose rows and third column are exact, shows exactness of the second column.

Again, exactness ofM(Y, 1)
rCY−−→M(C, 1)

δUC−−→M(U, 0) for all boundary pairs follows
in a analogous manner. We conclude that M is an exact ST -module.

Summing up, we have associated an exact real-rank-zero-like ST -module with
every exact B-module. By the naturality of our constructions using kernels and
cokernels we in fact obtain a functor G from the category of exact B-modules to
the category of exact real-rank-zero-like ST -modules. Let F be the restriction of
the functor FB to the category of exact real-rank-zero-like ST -modules. Then the
composition GF is equal to the identity functor on the category of exact B-modules.
It remains to show that FG is naturally isomorphic to the identity functor on the
category of exact real-rank-zero-like ST -modules.

Let M be an exact real-rank-zero-like ST -module. We will construct a natural
ST -module isomorphism ηM : M → (FG)(M). For x ∈ X we have M({̃x}, 0) =

(FG)(M)({̃x}, 0) and M({x}, 1) = (FG)(M)({x}, 1). Hence we set ηM ({̃x}, 0) =

id
M({̃x},0)

and ηM ({x}, 1) = id
M({x},1)

. Using the universal property of kernels and
cokernels we obtain natural group homomorphisms fY : M(Y, 1)→ (FG)(M)(Y, 1)
and gY : (FG)(M)(Y, 0) → M(Y, 0) for every Y ∈ LC(X). An application of the
five lemma shows that these are in fact isomorphisms. We can therefore define
ηM (Y, 1) = fY and ηM (Y, 0) = (gY )−1.

Finally, we check that this collection of maps consitutes an ST -module homo-
morphism, that is, the group homomorphism ηM : M → (FG)(M) intertwines the
actions of the category ST on M and on (FG)(M). By construction this is true

for the transformations (i
{̃y}
{̃x}

, 0), (r
{y}
{x}, 1) and δ{̃x}{y} for all x, y ∈ X with x→ y. By

Lemma 4.3 and Lemma 4.7 it is also true for the transformation (iVU , 0) for all open
subset U, V of X with U ⊆ V and for (rDC , 1) for all closed subsets C,D of X with
D ⊆ C.

Let V ⊆ X be open and let Y ⊆ V be relativelty closed. Since (rYV , 0) was defined
as a natural projection onto a cokernel, our assertion holds for this transformation
as well. Consequently, by (6.13) the assertion also follows for the transformation
(iYU , 0) for Y ∈ LC(X) and U ⊆ Y relatively open. Finally (6.15) implies the
assertion for the transformation rCY with Y ∈ LC(X) and C ⊆ Y relatively closed.
We have shown that η intertwines the actions of all even transformations on the
0-parts of M and (FG)(M). By analogous arguments the same follows for the
actions of all even transformations on the 1-parts of M and (FG)(M).

Our last step is to consider the action of a boundary transformation δUC for a
boundary pair (U,C). Since M and (FG)(M) are real-rank-zero-like the 0-to-1
component of δUC acts trivially on both modules. We have already seen that the
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assertion is true for the 1-to-0 component of δUC in the specific case that (U,C) =

({̃x}, {y}) with x→ y. The general case then follows from (6.15) as X is BDP.
Finally, the assertion on positivity — i.e., that for real rank zero C∗-algebras A

and B over X a ST -morphism Φ: FKST (A)→ FKST (B) is an order-isomorphism
if and only if FB(Φ) is — follows from Section 5 as our construction uses cokernels.

�

Definition 6.17. Let X be a finite T0-space. A boundary pair (U,C) in X is called
elementary if U and C are connected and non-empty, U is open, C is closed and if,
moreover, U ⊆ C̃ and C ⊆ U .

Lemma 6.18. Let X be a UPP space with the property that every elementary
boundary pair (U,C) in X is of the form ({̃x}, {y}) for two points x and y in X
with x→ y. Then X is a BDP space.

Proof. Let (U,C) be a boundary pair in X. We would like to show that the relation

δUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

holds in the category ST . We will reduce this statement to a special case using the
relations listed in Proposition 3.2. Notice that, if we define

dUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

then, by the proof of Theorem 6.10, the relations (6) hold with d in place of δ.
Using the relations (2) and (6) we can thus assume without loss of generality that

U and C are connected. Furthermore, it follows from the investigations in [2, §3.2]
that using the relations (6) in Proposition 3.2 we can moreover assume that the
boundary pair (U,C) is elementary. In this case, the assertion follows directly from
our assumption. �

Corollary 6.19. Let X be a finite T0-space. Assume that the directed graph as-
sociated to X is a forest, i.e., it contains no undirected cycles. Then X is a BDP
space.

Proof. It is clear that, if the directed graph associated to X is a forest, then X
is a UPP space. The assertion will be proved by contradiction using the previous
lemma. Let (U,C) be an elementary boundary not of the form ({̃x}, {y}) for any
x, y ∈ X. Choose a maximal element c ∈ C. Since C ⊆ U , there is u ∈ U with
u > c. We can, moreover, assume that u→ c because U ∪C is locally closed and c
is maximal in C. Since U is open and C is closed, we have {̃u} ⊆ U and {c} ⊆ C.
By our assumption, one of these inclusion must be strict. Without loss of generality
we assume {c} ( C. Choose d ∈ C \ {c}. If d ∈ {̃u}, then, since C is connected
and d /∈ {c}, there is a cycle in X. If, on the other hand, d /∈ {̃u}, then, by C ⊆ U ,
there is v ∈ U with v > d. Using that U and C are connected, we again obtain a
cycle in X. �

Remark 6.20. The above corollary applies, in particular, to accordion spaces. The
condition of Lemma 6.18 can also be verified for various UPP spaces which are
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not forests—the smallest example being the so-called pseudocircle with four points.
Consider, however, the sixteen-point space Q defined by the directed graph

y1

y3

y5

y7

y2y4

y6 y8

x1

x3

x5

x7

x2x4

x6 x8

��

kk33

��
RR

++ ss

LL
��

11

QQ

qq

mm





--

MM

++

��

kk

KK

��

&&
FF

ff

.

Then Q is a UPP space that does not satisfy the condition in Lemma 6.18 as the
subsets U = {x1, x2, . . . , x8} and C = {y1, y2, . . . , y8} give an elementary boundary
pair (U,C) that does not satisfy U = {̃x} nor C = {y} for any x, y ∈ X. A simple
computation shows that the boundary decomposition of δUC holds in the category
NT . It appears, however, that it does not hold in ST .

7. Reduced filtered K-theory

LetX be an arbitrary finite T0-space. In this section we introduce a functor FKR
which is equivalent to the reduced filtered K-theory defined by Gunner Restorff
in [13].

Definition 7.1. Let R denote the universal preadditive category generated by
objects x1, ∂̃x0, x̃0 for all x ∈ X and morphisms δ∂̃x0

x1
and ix̃0

∂̃x0
for all x ∈ X, and

i∂̃x0

ỹ0
when y → x, subject to the relations

(7.2) δ∂̃x0
x1

ix̃0

∂̃x0
= 0

(7.3) ipi
∂̃x0

ỹ(p)0
= iqi

∂̃x0

ỹ(q)0

for all x ∈ X, all y ∈ X satisfying y > x, and all paths p, q ∈ Path(y, x), where for
a path p = (zk)nk=1 in Path(y, x), we define y(p) = z2, and

ip = i
∂̃zn−10

z̃n0
i
z̃n−20

∂̃zn−10

· · · i∂̃z20

z̃30
iz̃20

∂̃z20

.

It is easy to see that the relations in ST corresponding to (7.2) and (7.3) hold.
We can thus define an additive functor R → ST by x1 7→ ({x}, 1), ∂̃x0 7→ (∂̃(x), 0)

and x̃0 7→ ({̃x}, 0), and in the obvious way on morphisms. Let FR : Mod(ST ) →
Mod(R) denote the induced functor. Define reduced filtered K-theory, FKR as the
composition of FK with FR.
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Definition 7.4. An R-module M is called exact if the sequences

(7.5) M(x1)
δ−→M(∂̃x0)

i−→M(x̃0)

(7.6)
⊕

(p,q)∈DP(x)

M(z̃(p, q)0)
(ip−iq)(p,q)−→

⊕

y→x
M(ỹ0)

(i
∂̃x0
ỹ0

)

−→ M(∂̃x0) −→ 0

are exact for all x ∈ X, where DP(x) denotes the set of pairs distinct paths (p, q)
to x and from some commen element which is denoted z(p, q).

Lemma 7.7. Let M be an exact real-rank-zero-like ST -module.Let Y be an open
subset of X and let (Ui)i∈I be an open covering of Y . Then the following sequence
is exact:

⊕

i,j∈I
M(Ui ∩ Uj , 0)

(i
Ui
Ui∩Uj

−iUjUi∩Uj )

−→
⊕

i∈I
M(Ui, 0)

(iYUi
)

−→ M(Y, 0) −→ 0.

Proof. Using an inductive argument as in [5, Proposition 1.3], we can reduce to the
case that I has only two elements. In this case, exactness follows from a straight-
forward diagram chase using the exact six-term sequences of the involved ideal
inclusions analogous to the one in the proof of Lemma 6.8. �
Corollary 7.8. Let M be an exact real-rank-zero-like ST -module and set N =
FR(M). Then N is an exact R-module.

Proof. We verify the exactness of the desired sequences inM . The sequence (7.5) is
exact since it is part of the exact six-term sequence associated to the open inclusion
∂̃{x} ⊆ {̃x}.

To prove exactness of the sequence (7.6), we apply the previous lemma to Y =

∂̃{x} and get the exact sequence

⊕

y→x,y′→x
M({̃y} ∩ {̃y′}, 0)

(
i
{̃y}
{̃y}∩{̃y′}

−i{̃y′}
{̃y}∩{̃y′}

)

−→
⊕

y→x
M({̃y}, 0)

(
i
∂̃{x}
{̃y}

)

−→ M(∂̃{x}, 0) −→ 0.

Another application of the previous lemma shows that
⊕

(p,q)∈DP(x)M(z̃(p, q), 0)

surjects onto
⊕

y→x,y′→xM({̃y} ∩ {̃y′}, 0) in a way making the obvious triangle
commute. This establishes the exact sequence (7.6). �
Remark 7.9. If X is a UPP space, then the set DP(x) is empty for every x ∈ X.
Hence, for an exact R-module M , the map (i∂̃x0

ỹ0
) :
⊕

y→xM(ỹ0) → M(∂̃x0) is
an isomorphism. In this sense, the groups M(∂̃x0) are redundant for an exact
R-module in case X is UPP.

8. An intermediate invariant

In this section, we define one more invariant, which, in a sense, can be thought
of as a union or join of reduced filtered K-theory and filtered K-theory restricted to
canonical base. It functions as an intermediate invariant towards filtered K-theory.

Let X be a UPP space.
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Definition 8.1. Let BR denote the universal preadditive category generated by
objects x1, x1, x̃0 for all x ∈ X and morphisms ix1

x1
for all x ∈ X and ry1x1

, δx̃0

y1
and

iỹ0x̃0
when x→ y, subject to the relations

(8.2)
∑

x→y
r
y1
x1
δx̃0

y1
=
∑

z→x
δz̃0x1

ix̃0

z̃0

for all x ∈ X and

(8.3) ix1
x1
r
y1
x1

= 0

when x→ y.
As before, there is a canonical additive functor BR → ST , inducing a functor

FBR : Mod(ST )→Mod(BR). Define FKBR as the composition of FK with FBR.
The category B embeds into BR, and a forgetful functor Mod(BR) →Mod(B)

is induced.
Define an additive functor FBR,R : Mod(BR)→Mod(R) by

M(∂̃x0) =
⊕

y→x
M(ỹ0)

and i∂̃x0
x1

= (ix1
x1
δỹ0x1

). One can check that this functor is well-defined.

Definition 8.4. An BR-module M is called exact if the sequences

(8.5) M(x1)

(
r
y1
x1
−δz̃0x1

)

−→
⊕

x→y
M(y1)⊕

⊕

z→x
M(z̃0)


δ

x̃0

y1

ix̃0

z̃0




−→ M(x̃0)

(8.6) 0 −→M(x1)
ix1x1−→M(x1)

(r
y1
x1

)
−→

⊕

x→y
M(y1)

are exact for all x ∈ X and all y ∈ X satisfying x→ y.

Lemma 8.7. Let M be an exact real-rank-zero-like ST -module. Then FBR(M) is
an exact BR-module.

Proof. The proof is similar to the proof of Lemma 6.8. �
Theorem 8.8. Assume that X is a UPP space. LetM and N be exact BR-modules
with M(x1) and N(x1) free for all non-open points x ∈ X, and let ϕ : FBR,R(M)→
FBR,R(N) be an R-module homomorphism. Then there exists an BR-module ho-
momorphism Φ: M → N satisfying FBR,R(Φ) = ϕ, and if ϕ is an isomorphism
then so is Φ.

If M = FKBR(A) and N = FKBR(B) for C∗-algebras A and B over X with real
rank zero, then Φ is an order-isomorphism if and only if ϕ is.

Proof. For x ∈ X, we define Φx1 = ϕx1 and Φx̃0
= ϕx̃0

. In the following, we will
define Φx1

by induction on the partial order of X in a way such that the relations

(8.9) r
y1
x1

Φy1 = Φx1
r
y1
x1
,

(8.10) δz̃0x1
Φz̃0 = Φx1

δz̃0x1

(8.11) ix1
x1

Φx1
= Φx1

ix1
x1
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hold for all y with x→ y and all z with z → x. For closed points x ∈ X, we set

Φx1
= ix1

x1
ϕx1

(
ix1
x1

)−1
.

Here we have used that, by exactness of (8.6), ix1
x1

is invertible as there is no y
with x→ y. While the condition (8.9) is empty, (8.10) is guarantied by ϕ being an
R-module homomorphism, and (8.11) holds by construction.

Now fix an element w ∈ X and assume that Φx1
is defined for all x < w in a way

such that (8.9) and (8.10) hold. Using the exact sequence (8.6) and the freeness
of
⊕

w→xM(w1), we can choose a free subgroup V ⊆ M(w1) such that M(w1)
decomposes as an inner direct sum

M(w1) = V ⊕M(w1) · iw1
w1
.

We will define Φw1 by specifying the two restrictions Φw1 |V and Φw1 |M(w1)·iw1
w1

.
Consider the diagram

V // //

!!

M(x1)

(
r
y1
x1
,−δz̃0x1

)

//
⊕

x→yM(y1)⊕⊕z→xM(z̃0)

(
δ
x̃0
y1

i
x̃0
z̃0

)

//

(
(Φy1),(Φz̃0)

)
��

M(x̃0)

Φx̃0

��
N(x1)(

r
y1
x1
,−δz̃0x1

)//
⊕

x→y N(y1)⊕⊕z→xN(z̃0) (
δ
x̃0
y1

i
x̃0
z̃0

) // N(x̃0)

(8.12)

By assumption, the rows of this diagram are exact and the right-hand square com-
mutes. We can therefore choose a homomorphism Φx1 |V : V → N(x1) such that
the left-hand pentagon commutes.

By exactness of (8.6), ix1
x1

is injective. Its corestriction onto its image M(x1) · ix1
x1

is thus an isomorphism. We may therefore define the restriction Φx1
|
M(x1)·ix1x1

in
the unique way which makes the following diagram commute:

M(x1)
ix1x1 //

ϕx1

��

M(x1) · ix1
x1

Φx1 |M(x1)·ix1x1
��

N(x1)
ix1x1 // N(x1) · ix1

x1

(8.13)

We have to check that Φw1 = (Φw1 |V ,Φw1 |M(w1)·iw1
w1

) fulfills (8.9) and (8.10) (with
x replaced with w). This is true on V because of the commutativity of the left-
hand side of (8.12). It is also true on the second summand: by (8.3), both sides
of (8.9) vanish on this subgroup; (8.10) follows again from ϕ being an R-module
homomorphism; and (8.11) holds by construction. This completes the induction
step.

The claim, that Φ is an isomorphism whenever ϕ is, follows from a repeated
application of the five-lemma.

Finally, our statement on positivity is obvious because only the K0-groups carry
an order and, by our definition, Φx̃0

= ϕx̃0
.

�
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Corollary 8.14. Assume that X is a BDP space. LetM and N be exact, real-rank-
zero-like ST -modules with M(x1) and N(x1) free for all non-open points x ∈ X,
and let ϕ : FR(M) → FR(N) be an R-module homomorphism. Then there exists
an ST -module homomorphism Φ: M → N satisfying FR(Φ) = ϕ, and if ϕ is an
isomorphism then so is Φ.

If M = FKST (A) and N = FKST (B) for C∗-algebras A and B over X with real
rank zero, then Φ is an order-isomorphism if and only if ϕ is.

Remark 8.15. The non-UPP space D = {1, 2, 3, 4} defined by 4 → 3, 4 → 2, 3 →
1, 2 → 1 should be mentioned here since it is the only known example of a finite
T0-space X for which there exist real rank zero Kirchberg X-algebras with sim-
ple subquotients in the bootstrap class that are not KK(X)-equivalent but have
isomorphic filtered K-theory, cf. [1, 2].

It turns out that if one adds to the assumptions that the K1-groups are free,
then for such C∗-algebras over D, isomorphisms on the reduced filtered K-theory
FKR lift to KK(D)-equivalences and thereby to D-equivariant ∗-isomorphisms, by
the classification result of Eberhard Kirchberg.

In [2], the second-named author constructed a refinement FK′ of filtered K-
theory over D and showed that, for nuclear, separable C∗-algebras over D with
simple subquotients in the bootstrap class, isomorphims on FK′ lift to KK(D)-
equivalences. Using the same techniques as in the proof of Theorem 8.8, one can
show that for real rank zero C∗-algebras A and B over D with K1(A(x)) and
K1(B(x)) free for all x ∈ D, any (positive) isomorphism FKR(A) → FKR(B) can
be (non-uniquely) extended to a (positive) isomorphism FK′(A)→ FK′(B).

For such C∗-algebras, the refined filtered K-theory FK′ consists of the groups
and maps in the following diagram, where Yi denotes the group FKi

Y (A),

241

��?
??

??
21

��?
??

??
121

��?
??

??
340

��?
??

??
30

��?
??

??
130

��?
??

??

41

??�����

��?
??

??
2341

??�����
//

��?
??

??
12341 // 1231

??�����
//

��?
??

??
40 // 1 \ 41

??�����
//

��?
??

??
11 // 2340

??�����
//

��?
??

??
12340 // 1230

??�����

��?
??

??
10

341

??�����
31

??�����
131

??�����
240

??�����
20

??�����
120

??�����

together with the group 1\40 that turns out to be naturally isomorphic to the direct
sum of 41 and 10. The reduced filtered K-theory FKR consists of the sequences
31 → 40 → 340, 21 → 40 → 240, 11 → 2340 → 12340 together with the maps
340 → 2340 and 240 → 2340 and the group 41.

For each part of the diagram of the form

Z1

��?
??

??

Y

??����� //

��?
??

??
Z2

// W

Z3

??�����

the sequence Y → Z1 ⊕ Z2 ⊕ Z3 → W is exact. Using this, isomorphisms on
the remaining K0-groups in FK′ can therefore be constructed as the maps induced
on cokernels (and for 1 \ 40 on the direct sum of 41 and 10), and isomorphisms
on the remaining K1-groups can be constructed by choosing split-maps since the
relevant groups are free, by the same techniques as in the proof of Theorem 8.8.
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The construction should be carried out from right to left, beginning with 1\41 and
ending with 241 and 341.

9. Range of reduced filtered K-theory

Let X be an arbitrary, finite T0-space. Let E be a countable graph and assume
that all vertices in E are regular and support at least two cycles. Recall that a cycle
is an edge whose source equals its range. Recall also that the saturated, hereditary
subsets of E0 correspond to ideals in C∗(E). Then all subsets of E0 are saturated,
hence a continuous map Prim(C∗(E)) → X corresponds to a map ψ : E0 → X
satisfying ψ(s(e)) ≥ ψ(r(e)) for all e ∈ E1.

Assume that such a ψ is given, i.e., that C∗(E) is a C∗-algebra over X. Then
FKR(C∗(E)) can be computed in the following way. Define for each F ⊆ X a
matrix DF ∈Mψ−1(F )(Z+) as DF = AF − 1 where AF is defined as

AF (v, w) = |{e ∈ E1 | r(e) = v, s(e) = w}|.
Let Y ∈ LC(X) and U ∈ O(Y ) be given, and define C = Y \ U . Then by [7],
the six-term exact sequence induced by C∗(E)(U) ↪→ C∗(E)(Y ) � C∗(E)(C) is
naturally isomorphic to the sequence

cokerDU
// cokerDY

// cokerDC

0

��
kerDC

DY |ψ
−1(U)

ψ−1(C)

OO

kerDY
oo kerDU

oo

induced, via the Snake Lemma, by the commuting diagram

Zψ−1(U) //

DU

��

Zψ−1(Y ) //

DY

��

Zψ−1(C)

DC

��
Zψ−1(U) // Zψ−1(Y ) // Zψ−1(C).

Given a map ψ : E0 → X, one can define matrices DF as above. Then C∗(E) is
a C∗-algebra over X, via ψ, if and only if DX |ψ

−1(z)
ψ−1(y) vanishes when y 6< z. And if

furthermore DX |ψ
−1(z)

ψ−1(y) is non-zero whenever y < z, then C∗(E) is tight over X.
The following theorem by Søren Eilers, Mark Tomforde, James West and the

third named author, determines the range of filtered K-theory over the two-point
space {1, 2} with 2→ 1. We quote it here to apply it in the proof of Theorem 9.2.

Theorem 9.1 ([8, 4.3 & 4.7]). Let E

G1
ε // G2

γ // G3

0

��
F3

δ

OO

F2
γ′
oo F1

ε′
oo

be an exact sequence of abelian groups with F1, F2, F3 free. Suppose that there exists
row-finite matrices A ∈ Mn1,n′1(Z) and B ∈ Mn3,n′3(Z) for some n1, n

′
1, n3, n

′
3 ∈

{1, 2, . . . ,∞} with isomorphisms

α1 : cokerA→ G1, β1 : kerA→ F1,
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α3 : cokerB → G3, β3 : kerB → F3.

Then there exists a row-finite matrix Y ∈Mn3,n′1(Z) and isomorphisms

α2 : coker

(
A 0
Y B

)
→ G2, β2 : ker

(
A 0
Y B

)
→ F2

such that (α1, α2, α3β1, β2, β3) gives an isomorphism of complexes from the exact
sequence

cokerA
I // coker

(
A 0
Y B

)
P // cokerB

0

��
cokerB

[Y ]

OO

coker

(
A 0
Y B

)

P ′
oo cokerA

I′
oo

where the maps I, I ′ and P, P ′ are induced by the obvious inclusions or projections,
to the exact sequence E.

If there exist an A′ ∈ Mn′1,n1
such that A′A − 1 ∈ Mn′1,n

′
1
(Z+), then Y can

be chosen such that Y ∈ Mn3,n′1(Z+). If furthermore a row-finite matrix Z ∈
Mn3,n′1(Z) is given, then Y can be chosen such that Y − Z ∈Mn3,n′1(Z+).

As subquotients of graph algebras are graph algebras, the reduced filtered K-
theory FKR of a graph algebra A over X will satisfy that the group K1(A(x)) is
free for all x ∈ X. Combining this with the following theorem, we get at complete
description of the range of reduced filtered K-theory FKR.

Theorem 9.2. Let M be an exact R-module with M(x1) free for all x ∈ X. Then
there exists a countable graph E satisfying that all vertices in E are regular and
support at least two cycles, and that C∗(E) is tight over X and has FKR(C∗(E))
isomorphic to M .

The graph E can be chosen to be finite if (and only if) M(x1) and M(x̃0) are
finitely generated, and the rank of M(x1) coincides with the rank of the cokernel of
i : M(∂̃x0)→M(x̃0), for all x ∈ X.

Proof. For each x ∈ X, choose by [8, 3.3] a matrix Dx ∈ MVx(Z+), where Vx
is a countable, non-empty set, satisfying that kerDx is isomorphic to M(x1) and
cokerDx is isomorphic to M(x0) = coker(M(∂̃x0)

i→M(x̃0)), and that all vertices
in the graph EDx+1 are regular and support at least two cycles. If M(x1) and
M(x̃0) are finitely generated, and the rank of M(x1) coincides with the rank of the
cokernel of i : M(∂̃x0) → M(x̃0), then the set Vx can be chosen to be finite. Let
ϕx1

: M(x1)→ kerDx and ϕx0
: M(x0)→ cokerDx denote the isomorphisms.

For each y, z ∈ X with y 6= z we desire to construct a matrix Hyz : ZVz → ZVy
with non-negative entries satisfying that Hyz is non-zero if and only if y > z, and
satisfying that for each x ∈ X there exists isomophism ϕ∂̃x0

and ϕx̃0
making the
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diagrams

(9.3) M(∂̃x0)
ϕ
∂̃x0

&&LLLLLLLLLL
i // M(x̃0)

ϕx̃0

��

// M(x0)

ϕx0zztttttttttt

cokerD∂̃(x)
// cokerD{̃x} // cokerDx

0

��
kerDx

D{̃x}|
ϕ−1(∂̃(x))

ϕ−1(x)

OO

kerD{̃x}oo kerD∂̃(x)
oo

M(x1)

ϕx1

88qqqqqqqqqqq

δ

OO

and

(9.4) M(ỹ0)
ϕỹ0

&&LLLLLLLLLL
i // M(∂̃x0)

ϕ
∂̃x0

��
cokerD{̃y} // cokerD∂̃(x)

// cokerD
∂̃(x)\{̃y}

0

��
kerD

∂̃(x)\{̃y}

D
∂̃(x)
|ϕ
−1({̃y})
ϕ−1(∂̃(x)\{̃y})

OO

kerD∂̃(x)
oo kerD{̃y}oo

commute when y → x, and where DF ∈MVF (Z+) for each F ⊆ X is defined as

DF (v, w) =

{
Dx(v, w) v, w ∈ Vx
Hyz(v, w) v ∈ Vy, w ∈ Vx, x 6= y

where VF =
⋃
y∈F Vy. The constructed graph EDX+1 will then have the desired

properties.
Let U ∈ O(X) and assume that for all z, y ∈ U , the matrices Hyz and isomor-

phisms ϕ∂̃y0 and ϕỹ0 have been defined and satisfy that the diagrams (9.3) and (9.4)
commute for all x, y ∈ U with y → x. Let x be an open point in X \ U and let us
construct isomorphisms ϕ∂̃x0

and ϕx̃0
, and for all y ∈ ∂̃(x) non-zero matrices Hyx,

making the diagrams (9.3) and (9.4) commute.
Consider the commuting diagram

⊕
M(z̃0) //

(ϕz̃0 )

��

⊕
y→xM(ỹ0) //

(ϕz̃0 )

��

M(∂̃x0) //

��

0

⊕
cokerD{̃z} //

⊕
y→x cokerD{̃y} // cokerD∂̃(x)

// 0.

The top row is exact by exactness of M , and the bottom row is exact by exactness
of FK(C∗(ED

∂̃(x)
+1)). An isomorphism ϕ∂̃x0

: M(∂̃x0) → cokerD∂̃(x) is therefore
induced. By construction, (9.4) commutes for all y → x.
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Now consider the commuting diagram

M(∂̃x0)
i //

ϕ
∂̃x0

&&LLLLLLLLLL
M(x̃0) // M(x0)

ϕx0zztttttttttt

cokerD∂̃(x)
// M(x̃0) // cokerDx

0

��
kerDx

OO

Foo kerD∂̃(x)
oo

M(x1)

δ

OO

ϕx1

88qqqqqqqqqqq

where a free group F and maps in to and out of it have been choosen so that the
inner six-term sequence is exact. Apply [8] to the inner six-term exact sequence to
get non-zero matrices Hyx for all y ∈ ∂̃(x) realising the sequence, i.e., making (9.3)
commute. �

Corollary 9.5. Let X be a finite T0-space and assume that FKR is a complete
invariant for purely infinite, separable, nuclear, real rank zero C∗-algebras that are
tight over X and satisfy that for all x ∈ X, A(x) is in the bootstrap class and
K1(A(x)) is free.

Let I ↪→ A � B be an extension of C∗-algebras where I and B are stably iso-
morphic to Cuntz-Krieger algebras, A has primitive ideal space X, and the induced
map K0(B) → K1(I) vanishes. Then A is stably isomorphic to a Cuntz-Krieger
algebra.

Proof. As I and B have real rank zero and the boundary map K0(B) → K1(I)
vanishes, A has real rank zero. As for each x ∈ X, A(x) is a simple subquotient of
either I or B, K1(A(x)) is free and rank K0(A(x)) = rank K1(A(x)) < ∞. Hence
there exists a Cuntz-Krieger algebra D satisfying FKR(A) ∼= FKR(D). �

10. Main result

Combining our results with the completeness of filtered K-theory over accordion
spaces, we get the following characterization of purely infinite graph algebras, and
of Cuntz-Krieger algebras.

Theorem 10.1. Let X be an accordion space. There are bijections between the
following sets:

• stable isomorphism classes of tight, purely infinite graph algebras over X,
• isomorphism classes of Kirchberg X-algebras A of real rank zero, with all
simple subquotients in the bootstrap class, and satisfying that K1

(
A({x})

)

is free for all x ∈ X,
• isomorphism classes of countable, exact, real-rank-zero-like NT -modulesM
with M({x}, 1) free for all x ∈ X,

• isomorphism classes of countable, exact, real-rank-zero-like, ST -modulesM
with M({x}, 1) free for all x ∈ X,

• isomorphism classes of countable, exact B-modules M with M(x1) free for
all x ∈ X,
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• isomorphism classes of countable, exact R-modules M with M(x1) free for
all x ∈ X.

Corollary 10.2. Let X be an accordion space. There are bijections between the
following sets:

• isomorphism classes of tight Cuntz Krieger algebras over X,
• isomorphism classes of Kirchberg X-algebras A of real rank zero, with all
simple subquotients in the bootstrap class, and with finitely generated filtered
K-theory such that K1

(
A({x})

)
is free for all x ∈ X and rank K0

(
A(Y )

)
=

rank K1

(
A(Y )

)
<∞ for every Y ∈ LC(X),

• isomorphism classes of countable, exact, real-rank-zero-like NT -modulesM
with M({x}, 1) free for all x ∈ X and

rank(M({x}, 0)) = rank(M({x}, 1)) <∞,
• isomorphism classes of countable, exact, real-rank-zero-like, ST -modulesM
with M({x}, 1) free for all x ∈ X and

rank(M({x}, 0)) = rank(M({x}, 1)) <∞,
• isomorphism classes of countable, exact B-modules M with M(x1) free for
all x ∈ X and

rank(coker(
⊕

y→x
M(ỹ0)→M(x̃0))) = rank(x1) <∞,

• isomorphism classes of countable, exact R-modules M with M(x1) free for
all x ∈ X and

rank(coker(M(∂̃x0)→M(x̃0))) = rank(M(x1)) <∞.
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